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Abstract. The increased availability of data created as part of the software development process allows us to apply novel
analysis techniques on the data and use the results to guide the process’s optimization. In this paper we describe various data
sources and discuss the principles and techniques of data mining as applied on software engineering data. Data that can be mined
is generated by most parts of the development process: requirements elicitation, development analysis, testing, debugging, and
maintenance. Based on this classification we survey the mining approaches that have been used and categorize them according
to the corresponding parts of the development process and the task they assist. Thus the survey provides researchers with a
concise overview of data mining techniques applied to software engineering data, and aids practitioners on the selection of
appropriate data mining techniques for their work.
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1. Introduction

The recent advances in data management technology provide us with the tools and methods for efficient
collection, storage and indexing of data. Large amount of data is produced in software development that
software organizations collect in hope of extracting useful information and obtain better understanding of
their processes and products. Also a significant amount of Open Source Software (OSS) project metadata
is collected and maintained in software repositories. For instance, the FLOSSmole1 project integrates
data from several OSS projects and freely provides them in several formats. Then there is an increasing
abundance of data stored in software engineering (SE) repositories which can play a significant role
in improving software productivity and quality. Specifically, data in software development can refer
to programs versions, execution traces, error/bug reportsand open source packages. Mailing lists,
discussion forums and newsletters also provide useful information about a piece of software. This
explosive growth of software engineers’ ability to collectand store SE data has created a need for new,
scalable and efficient, tools for data analysis.

Data mining provides the techniques to analyze and extract novel, interesting patterns from data.
Formally, it has been defined as the process of inducing previously unknown and potentially useful infor-
mation from data collections. Thus mining of software engineering data has recently attracted the interest
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of researchers, emerging as a promising means to meet the goal of software improvement [58]. The
extracted patterns of knowledge can assist software engineers in predicting, planning, and understanding
various aspects of a project so that they can more efficientlysupport future development and project
management activities. There are several challenges that emerge in mining software repositories [57]:

– Complex Data. Software engineers usually use individual data types to perform a software engi-
neering task. However, software engineering domain can be complex and thus software engineering
tasks increasingly demands the mining of multiple correlated data types to achieve the most effective
results. Moreover, there are cases that significant information is not only associated with individual
data items but with the linkage among them. Thus the requirement of techniques that analyze com-
plex data types taking also into account the links among SE data is stronger than ever in software
engineering.

– Large-scale data. Huge amount of data are collected and stored in software engineering repositories.
In most of the cases software engineers analyze only a few local repositories to accomplish their tasks.
However, there may be too few relevant data points in the local software engineering repositories
to support the mining of desirable patterns (e.g. extract patterns among API methods of interests).
This problem can be addressed if we are able to mine Internet-scale software repositories. Also
mining techniques can be applied to many software repositories within an organization or across
organization or even to the entire open source world. Thus the requirement for techniques that
enable efficient mining of large scale data arises.

In this paper, we present an overview of approaches that aim to connect the research areas of data mining
and software engineering leading to more efficient techniques for processing software. In Section 2,
we provide an introduction to the main data mining concepts and approaches while in Section 3 we
describe the different types of software engineering data that can be mined. In the follow up, a discussion
takes place in Section 4 concerning the methods that have applied data mining techniques in the context
of software engineering. It surveys the current research that incorporates data mining in software
engineering while it discusses on the main characteristicsof the respective approaches. Specifically,
our study is based on the following main features of the approaches: i) data mining technique used
(Section 2), ii) the software engineering data to which theyare applied (Section 3), and iii) the software
engineering tasks that they can help (Section 4). Thus, thispaper aims to introduce practitioners to
the fundamental concepts and techniques that can use in order to obtain a better understanding of the
software engineering processes and potentially perform them more efficiently by applying data mining.
In parallel, researchers can exploit the recent techniquesto better understand the project data, to identify
the limitations of the current processes and define methodologies that facilitate software engineering
tasks.

To summarize, the key contributions of this work are:

– A classification of the approaches used to mine software engineering data, according to the software
engineering areas that assist.

– Matrix based analysis framework bridging software engineering with data mining approaches.
– Bringing together data mining and software engineering research areas. A number of approaches

that use data mining in software engineering tasks are presented providing new work directions to
both researchers and practitioners in software engineering.
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2. Data mining and knowledge discovery

The main goals of data mining arepredictionanddescription. Predictionaims at estimating the future
value or predicting the course of target variables based on study of other variables.Descriptionis focused
on patterns discovery in order to aid data representation towards a more comprehensible and exploitable
manner. A gooddescriptionsuggests a good explanation of data behavior. The relevant importance
of predictionand descriptionvaries for different data mining applications. However, asregards the
knowledge discovery,descriptiontends to be more important thanprediction, contrary to the pattern
recognition and machine learning application, for whichpredictionis more important.

Data mining assists with software engineering tasks by explaining and analyzing in depth software
artifacts and processes. Based on data mining techniques wecan extract relations among software
projects. Data mining can exploit the extracted information to evaluate the software projects and/or predict
software behavior. A number of data mining methods have beenproposed to satisfy the requirements
of different applications. All of them accomplish a set of data mining functionalities to identify and
describe interesting patterns of knowledge extracted froma data set. Below we briefly describe the main
data mining tasks and how they can be used in software engineering.

– Clustering – Unsupervised Learning Techniques
Clustering is one of the most useful tasks in data mining, applied for discovering groups and
identifying interesting distributions and patterns in theunderlying data. The clustering problem is
about partitioning a given data set into groups (clusters) such that the data points in a cluster are
more similar to each other than points in different clusters[28,33]. In the clustering process, there
are no predefined classes and no examples that foretell the kind of desirable relations being valid
among the data. Thus it is perceived as an unsupervised learning process [5]. Clustering can be used
to produce a view of the underlying data distribution as wellas automatically identify data outliers.
In software engineering, clustering can be used to define groups of similar modules based on the
number of modifications and cyclomatic number metrics (the number of linearly independent paths
through a program’s source code).

– Classification – Supervised Learning Techniques
The classification problem has been studied extensively in the statistics, pattern recognition and
machine learning areas of research as a possible solution tothe knowledge acquisition or knowledge
extraction problem [15,55]. Classification is one of the main tasks in data mining for assigning a
data item to a predefined set of classes. Classification can bedescribed as a function that maps
(classifies) a data item into one of the several predefined classes [18]. A well-defined set of classes
and a training set of pre-classified examples characterize the classification. On the contrary, the
clustering process does not rely on predefined classes or examples [5]. The goal in the classification
process is to induce a model that can be used to classify future data items whose classification is
unknown. One of the widely used classification techniques isthe construction ofdecision trees.
They can be used to discover classification rules for a chosenattribute of a data set by systematically
subdividing the information contained in this data set.Decision treesare also one of the tools that
have been chosen for building classification models in the software engineering field. Figure 1 shows
a classification tree that has been constructed to provide a mechanism for identifying risky software
modules based on attributes of the module and its system. Thus, based on the given decision tree,
we can extract the following rule that assists with making decision on errors in a module:

IF (# of data bindings> 10) AND (it is part of a non real-time system) THEN
the module is unlikely to have errors
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Fig. 1. Classification tree for identifying risky software modules.

– Frequent Pattern Mining and Association Rules.Association rules mining has attracted considerable
interest because the rules provide a concise way to state potentially useful information that is
easily understood by the end-users. Association rules reveal underlying “correlations” between the
attributes in the data set. These correlations are presented in the following form: A → B, where
A, B refer to attribute sets in underlying data. Therefore, they are used to extract information based
on coincidences in a data set. For instance, analyzing system’s error logs discovered at software
modules we can extract relations between inducing events based on the software module features
and errors’ categories. Such a rule would have the followingform:
(large/small size, large/small complexity, number of revisions)→ (interface error, missing or wrong
functionality, algorithms or data structure error etc.)

– Data Characterization and Summarization.Data characterization [23] is the summarization of
the data characteristics of a specific class of data. The dataare collected based on user-specified
requirements. These techniques can be used to discover a setof patterns from software engineering
repositories that satisfy specific characteristics.

– Change and Deviation Detectionfocuses on discovering the most significant changes in the data
from previously measured values. Thus these techniques canassist with identifying source code
changes or identifying differences among extracted patterns from software engineering repositories.

Various approaches have been developed to accomplish the above mentioned data mining tasks and
deal with different types of data. They exploit techniques from different aspects of data management and
data analysis, including pattern recognition, machine learning, statistics, information retrieval, concept
and text analysis.

Text Mining is introduced as a specific case of data mining and refers to the process of deriving
information from text. Software engineering repositories, among others, include textual information like
source code, mailing lists, bug reports and execution logs.The mining of textual artifacts is requisite
for many important activities in software engineering: tracing of requirements; retrieval of components
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Fig. 2. Preprocessing, Storage and Processing of Texts in Text Mining.

from a repository; identify and predict software failures;software maintenance; testing etc. The methods
deployed in text mining, depending on the application, usually require the transformation of the texts
into an intermediate structured representation, which canbe for example the storage of the texts into a
database management system, according to a specific schema.In many approaches though, there is gain
into also keeping a semi-structured intermediate form of the texts, like for example the representation
of documents in a graph, where social analysis and graph techniques can be applied. Independently
from the task objective, text mining requires preprocessing techniques, usually levying qualitative and
quantitative analysis of the documents’ features. In [10,2], several preprocessing and feature analysis
techniques are discussed for text mining. In Fig. 2, the diagram depicts the most important phases of the
preprocessing analysis, as well as the most important text mining techniques.

3. Software engineering data

The nature of the data being used by data mining techniques insoftware engineering can act as
distinguishing means of the underlying methods, since it affects the preprocessing as well as the post
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analysis. Below we present the various sources of software engineering data to which data mining has
been applied. The presentation also tries to reflect the difficulty of preparing the data for processing.

3.1. Documentation

Software documentation data are of high importance but in tandem of high complexity for being
processed by data mining techniques. Application, system administration and source code documentation
constitute a large buffer of documents and free text for software analysis and mining. Among the pieces
of text information that can be considered of great value foruse in mining techniques are the software
description, start up and usage configuration, user guide, file management issues, logging, license
and compatibility issues. Besides external software documentation, internal documentation might also
play the role of important data source. Most of the documentation though lies in several different
types of documents, like portable document format, html, text only and typesetting system files. An
analytical reference of all possible types of software documentation data can be found in [53]. Due
to the large variety of document types and text data used, it is necessary that a preprocessing module
for documentation data is able to use parsers of all the aforementioned types of documents. Another
important source of information that lies in software documentation are the multimedia data. Figures, as
well as audio and video instructions, can all be considered of added information value. In such cases,
multimedia mining techniques must be incorporated to tackle with the pre- and post-processing, raising
the overall processing overhead.

3.2. Software configuration management data

Data rising from software configuration management systems(SCMs) among others may include
software code, documents, design models, status accounting, defect tracking as well as revision control
data (documentation and comments escorting software versions in the adopted CVS). In [17] the evolution
of SCMs from the early days of software development to present is discussed, where additionally the
impact of research in the field of SCMs is depicted. Independently of the underlying version control
system (centralized or distributed) the amount of data available from SCMs is large and thus a careful
study and clean understanding of the software domain is needed, so thus the most valuable data are kept.
The majority of the SCMs data is structured text.

Decentralized source code management (DSCM) systems show asignificant growth the last years.
Bird et al. have studied the main properties of theses systems in [7] and discussed the advantages and
risks that decentralization brings in mining software engineering data. DSCMs can provide software
engineering researchers with new and useful data which enable them to better understand software
processes. However the DSCM data should be mined with care. Bird et al. in their work have noted
potential pitfalls that one may encounter when analyzing this data since there are differences in semantics
of terms used in centralized and decentralized source code management systems.

3.3. Source code

Source code for data mining in software engineering can be proved an important source of data.
Various data mining applications in software engineering have employed source code to aid software
maintenance, program comprehension and software components’ analysis. The details of these ap-
proaches are discussed in section 4. An initial preprocessing of the available source code is always a
caveat, since a parser for the respective source code language must be available. Once parsed, the source
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code can be seen as structured text. Central aspects of applying data mining techniques in source code
among others include prediction of future changes through mining change history, predicting change
propagation, faults from cached history, as well as predicting defect densities in source code files.

3.4. Compiled code and execution traces

Compiled code constitutes in its form of object code one of the alternative data sources for applying
static analysis in software engineering. Compiled code hasalso been used as a data source from data
mining techniques in order to assist malicious software detection. Furthermore, web mining principles
have been widely used in object-oriented executables to assist program comprehension for means of
reverse engineering. When the software modules and components are tested, a chain of events occurs
which are recorded in an execution trace. Execution patternmining has also been used in execution traces
under the framework of dynamic analysis to assist with the extraction of software systems’ functionalities.

3.5. Issue-tracking and bug databases

Issue-tracking or bug reporting databases constitute the most important cesspool of issue reporting in
software systems. Structured data (database tuples) containing the description of an issue, the reporter’s
details and date/time are the standard three types of information that can be found in issue-tracking
databases. Machine learning techniques have been successfully used in the past to predict correct
assignments of developers to bugs, cleaning the database from manifestations of the same error, or even
predicting software modules that are affected at the same time from reported bugs.

3.6. Mailing lists

Large software systems, and especially open source software, offer mailing lists as a means of bridging
users and developers. Mailing lists constitute hard data since they contain a lot of free text. Message and
author graphs can be easily pulled up from the data, but content analysis is hard since probably messages
constituting replies need to consider initial and/or previous discussions in the mailing lists. Data mining
applications in mailing lists among others include but are not limited to text analysis, text clustering
of subjects discussed, and linguistic analysis of messagesto highlight the developers personalities and
profiles.

4. Data mining for software engineering

Due to its capability to deal with large volumes of data and its efficiency to identify hidden patterns of
knowledge, data mining has been proposed in a number of research work as mean to support industrial
scale software maintenance, debugging, testing. The mining results can help software engineers to
predict software failures, extract and classify common bugs, identify relations among classes in a
libraries, analyze defect data, discover reused patterns in source code and thus automate the development
procedure. In general terms, using data mining practitioners and researchers can explore the potential
of software engineering data and use the mining results in order to better manage their projects and
to produce higher quality software systems that are delivered on time and on budget. In the following
sections we discuss the main features of mining approaches that have been used in software engineering
and how the results can be used in the software engineering life cycle. We classify the approaches
according to the software engineering tasks that they help and the mining techniques that they use.
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Table 1
Mining approaches used in Requirement Elicitation and Tracing

Requirement Elicitation
MINING INPUT DATA ANALYSIS
APPROACH DATA RESULTS
Classification ([26],[27]) Documentation requirements
Information [21] SCM, requirements
retrieval, mailing lists
Data Summarization CVS logs

4.1. Requirement elicitation and tracing

In this section we discuss how data analysis techniques can contribute to educe or trace system
requirements. The works for requirement analysis refers todata mining in its broadest sense, including
certain related activities and methodologies from statistics, machine learning and information retrieval.
Table 1 summarizes the main features of the techniques discussed below.

4.1.1. Classification
A recent approach, presented in [26], has focused on improving the extraction of high level and low

level requirements using information retrieval. More specifically, they consider the documents’ universe
as being the union of the design elements and the individual requirements and they map the problem of
requirements tracing into finding the similarities betweenthe vector-space representations of high level
and low level requirements, thus reducing it into an IR task.As an expansion of this study, in [27], the
authors focused on discovering the factors that affect an analysts’ behavior when working with results
from data mining tools in software engineering. The whole study was based on the verified hypothesis
that the accuracy of computer-generated candidate traces affects the accuracy of traces produced by
the analyst. The study presents how the performance of tools that extract high level and low level
requirements through the use of information retrieval, affects the time consumed by an analyst to submit
feedback, as well as her performance. Results reveal that data mining systems exhibiting low recall result
in a time consuming feedback from the analyst. In parallel, high recall leads to a large number of false
positive thus prompting the analyst cut down large number ofrequirements, dimming recall. Overall
reported results reveal that the analyst tends to balance precision and recall at the same levels.

4.1.2. Data summarization
From another perspective, text mining has been used in software engineering to validate the data from

mailing lists, CVS logs, and change log files of open source software. In [21] they created a set of
tools, namely SoftChange2, that implements data validation from the aforementioned text sources of
open source software. Their tools retrieve, summarize and validate these types of data of open source
projects. Part of their analysis can mark out the most activedevelopers of an open source project. The
statistics and knowledge gathered by SoftChange analysis has not been exploited fully though, since
further predictive methods can be applied with regard to fragments of code that may change in the future,
or associative analysis between the changes’ importance and the individuals (i.e. were all the changes
committed by the most active developer as important as the rest, in scale and in practice?).

2Publicly available at http://sourcechange.sourceforge.net/.
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Table 2
Mining approaches used in Software Development

Development
MINING INPUT DATA ANALYSIS
APPROACH DATA RESULTS

Clustering [29] source code software
(Social network processes
analysis)
Classification [56] SCM, track of bugs
text retrieval source code
Frequent pattern mining [44] defect defect correction
and Association Rules data effort rules
Frequent pattern mining [11] program dependence graph neglected conditions
and Association Rules

4.2. Development analysis

This section provides an overview of mining approaches usedto assist with development process. We
summarize the main features of these approaches in Table 2.

4.2.1. Clustering
Text mining has also been used in software engineering for discovering development processes.

Software processes are composed of events such as relationsof agents, tools, resources, and activities
organized by control flow structures dictating that sets of events execute in serial, parallel, iteratively,
or that one of the set is selectively performed. Software process discovery takes as input artifacts of
development (e.g. source code, communication transcripts, etc.) and aims to elicit the sequence of events
characterizing the tasks that led to their development. In [29] an innovative method of discovering
software processes from open source software Web repositories is presented. Their method contains
text extraction techniques, entity resolution and social network analysis, and it is based on the process
of entity taxonomies. Automatic means of evolving the taxonomy using text mining tasks could have
been levied, so that the method lacks strict dependency on the taxonomy’s actions, tools, resources and
agents. An example could be the use of text clustering on the open software text resources and extraction
of new candidate items for the taxonomy arising from the clusters’ labels.

In [6], they used as text input the Apache developer mailing list. Entity resolution was essential,
since many individuals used more than one alias. After constructing the social graph occurring from
the interconnections between poster and replier, they madea social network analysis and came to really
important findings, like the strong relationship between email activity and source code level activity.
Furthermore, social network analysis in that level revealed the important nodes (individuals) in the
discussions. Though graph and link analysis were engaged inthe method, the use of node ranking
techniques, like PageRank, or other graph processing techniques like Spreading Activation, did not take
place.

4.2.2. Classification
Source code repositories stores a wealth of information that is not only useful for managing and

building source code, but also provide a detailed log how thesource code has evolved during development.
Information regarding the evidence of source code refactoring will be stored in the repository. Also as
bugs are fixed, the changes made to correct the problem are recorded. As new APIs are added to the
source code, the proper way to use them is implicitly explained in the source code. Then, one of the
challenges is to develop tools and techniques to automatically extract and use this useful information.
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In [56], a method is proposed which uses data describing bug fixes mined from the source code
repository to improve static analysis techniques used to find bugs. It is a two step approach that uses the
source code change history of a software project to assist with refining the search for bugs.

The first step in the process is toidentify the types of bugsthat are being fixed in the software. The
goal is to review the historical data stored for the softwareproject, in order to gain an understanding of
what data exists and how useful it may be in the task of bug findings. Many of the bugs found in the CVS
history are good candidates for being detected by statisticanalysis, NULL pointer checks and function
return value checks.

The second step is tobuild a bug detectordriven by these findings. The idea is to develop a function
return value checker based on the knowledge that a specific type of bug has been fixed many times in
the past. Briefly, this checker looks for instances where thereturn value from a function is used in the
source code before being tested. Using a return value could mean passing it as an argument to a function,
using it as part of calculation, de-referencing the value ifit is a pointer or overwriting the value before
it is tested. Also, cases that return values are never storedby the calling function are checked. Testing a
return value means that some control flow decision relies on the value.

The checker does a data flow analysis on the variable holding the returned value only to the point of
determining if the value is used before being tested. It simply identifies the original variable the returned
value is stored into and determines the next use of that variable.

Moreover, the checker categorizes the warnings it finds intoone of the following categories:

– Warnings are flagged for return values that are completely
ignored or if the return value is stored but never used.

– Warnings are also flagged for return values that are used in a calculation before being tested in a
control flow statement.

Any return value passed as an argument to a function before being tested is flagged, as well as any
pointer return value that is de-referenced without being tested.

However there are types of functions that lead the static analysis procedure to produce false positive
warnings. If there is no previous knowledge, it is difficult to tell which function does not need their return
value checked. Mining techniques for source code repository can assist with improving static analysis
results. Specifically, the data we mine from the source code repository and from the current version of
the software is used to determine the actual usage pattern for each function.

In general terms, it has been observed that the bugs cataloged in bug databases and those found by
inspecting source code change histories differ in type and level of abstraction. Software repositories
record all the bug fixed, from every step in development process and thus they provide much useful
information. Therefore, a system for bug finding techniquesis proved to be more effective when it
automatically mines data from source code repositories.

4.2.3. Frequent pattern mining and association rules
An approach is proposed in [44] that exploits association rules extraction techniques to analyze defect

data. Software defects include bugs, specification and design changes. The collected defect data under
analysis are nominal scale variables such as description ofdefect, priority to fix a defect and its status
as well as interval and ratio scale variable regarding defect correction effort and duration. An extended
association rule mining method is applied to extract usefulinformation and reveal rules associated with
defect correction effort.

The problem of discovering neglected conditions (missing paths, missing conditions, and missing
cases) in software is studied in [11]. Chang et al. proposed the use of graph mining techniques to
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Table 3
Mining approaches used in software testing

Testing
MINING INPUT DATA ANALYSIS
APPROACH DATA RESULTS

Classification[35] I/O variables a network producing
of software sets for
system function testing

Clustering [13] execution profiles clusters of execution profiles
Clustering, Classification [8] program executions software behavior classifiers

discover implicit conditional rules in a code base and to discover rule violations that indicate neglected
condition. They represent programs and conditional programming rules in terms of dependence graphs.
Then they use frequent item set mining and frequent subgraphmining techniques to discover conditional
rules involving preconditions and postconditions of function calls as well as discover violations of those
rules.

4.3. Testing

The evaluation of software is based on tests that are designed by software testers. Thus the evaluation
of test outputs is associated with a considerable effort by human testers who often have imperfect
knowledge of the requirements specification.

Data mining approaches can be used for extracting useful information from the tested software which
can assist with the software testing. Specifically, the induced data mining models of tested software can
be used for recovering missing and incomplete specifications, designing a set of regression tests and
evaluating the correctness of software outputs when testing new releases of the system. A regression test
library should include a minimal number of tests that cover all possible aspects of system functionality.
To ensure effective design of new regression test cases, onehas to recover the actual requirements of
an existing system. Thus, a tester has to analyze system specifications, perform structural analysis of
the system’s source code and observe the results of system execution in order to define input-output
relationships in tested software.

Table 3 summarizes the main data mining techniques that are used in the context of software testing.

4.3.1. Clustering
In [13] a method is proposed that exploits the cluster analysis methods to select the set of executions that

will be evaluated for conformance to requirements. The proposed approach assumes a set of execution
profiles that have been defined executing the software version under test on a given set of program inputs.
A clustering algorithm is used to filter profiles based on their similar characteristics. Then execution
profiles are selected from the resulting clusters.

An approach that aims to analyze a collection of programs’ executions and define classifiers of software
behavior is proposed in [8]. According to this work, Markov models are used to encode the execution
of profiles of projects. Then the Markov models of individualprogram executions are clustered using
an agglomerative clustering algorithm. The clustering procedure aims to aggregate the similar program
execution and thus define effective classifiers of program behavior. Also a bootstrapping is used as an
active learning technique so that the learning classifiers is trained in a incremental fashion. Specifically,
it assists with identifying new training instances for the classifiers and then the classifiers can be retrained
using the expanded set of training instances.
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Fig. 3. An example of Info-Fuzzy Network structure.

4.3.2. Classification
An approach that aims to automate the input-output analysisof execution data based on a data mining

methodology is proposed in [35]. This methodology relies ontheinfo-fuzzy network(IFN) which has an
‘oblivious’ tree-like structure. The network components include the root node, a changeable number of
hidden layers (one layer for each selected input) and the target (output) layer representing the possible
output values. The same input attribute is used across all nodes of a given layer (level) while each target
node is associated with a value (class) in the domain of a target attribute. If the IFN model is aimed at
predicting the values of a continuous target attribute, thetarget nodes represent disjoint intervals in the
attribute range.

A hidden layerl, consists of nodes representing conjunctions of values of the first l input attributes,
which is similar to the definition of an internal node in a standard decision tree. The final (terminal)
nodes of the network represent non-redundant conjunctionsof input values that produce distinct outputs.
Considering that the network is induced from execution dataof a software system, each interconnection
between a terminal and target node represents a possible output of a test case. Figure 3 presents an IFN
structure.

A separate info-fuzzy network is constructed to represent each output variable.
The main modules of the IFN-based environment presented in [35] are:

– Legacy system(LS). This module represents a program, a component or a system to be tested in
subsequent versions of the software.

– Specification of Application Inputs and Outputs(SAIO). Basic data on each input and output variable
in the Legacy System.

– Random test generator(RTG). This module generates random combinations of values in the range
of each input variable.

– Test bed(TB). This module feeds training cases generated by the RTG module to the LS.

The IFN algorithm is trained on inputs provided by RTG and outputs obtained from a legacy system
by means of the Test Bed module. A separate IFN module is builtfor each output variable.

The IFN algorithm takes as input the training cases that are randomly generated by the RTG module
and the outputs produced by LS for each test case. The IFN algorithm repeatedly runs to find a subset
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Table 4
Mining approaches used in Debugging

Debugging
MINING INPUT DEBUGGING
APPROACH DATA RESULTS

Probabilistic test suite of program detection of
classification [36] input and desired output logical errors
SVM classification [37] program executions logical bugs
Classification, execution profiles& decision tree of
Decision trees [19,46] result(success/failure) failed executions
Frequent pattern mining source code patterns
and Association Rules [31] of call-usage

of input variables relevant to each output and the corresponding set of non-redundant test cases. Actual
test cases are generated from the automatically detected equivalence classes by using an existing testing
policy.

4.4. Debugging

Program logic errors rarely incur memory access violationsbut generate incorrect outputs. A number
of mining techniques have been used to identify logic error and assist with software debugging (see
Table 4).

4.4.1. Classification
An approach that aims to investigate program logic errors isproposed in [36]. Liu et al. develop a data

mining algorithm that can assist programmers’ manual debugging. They introduce a statistical approach
to quantify the bug relevance of each condition statement and then develop two algorithms to locate the
possible buggy functions.

The proposed model considers a test suiteT n
i=1

for a programP , where each test caseti = (di, oi)
has an inputdi and the desired outputoi. We say that P passes the test caseti if and only if the
output of execution P onti is identical tooi. Then we can partition the test suite T into two disjoint
subsetsTp and Tf , corresponding to the passing and failing cases respectively. In this work, they
instrument each condition statement inP to collect the evaluation frequencies at runtime. Specifically,
they consider the boolean expression in each condition statement as one distinctboolean feature. Also
assuming that X is the random variable for the boolean bias ofa boolean featureB, we usef(X/θp)
andf (X/θf ) to denote the underlying probability model that generates the boolean bias ofB for cases
from Tp andTf respectively. Then we claim that a boolean featureB is relevant to the program error
if its underlying probability modelf(X/θf ) diverges fromf(X/θp). If L(B) is a similarity function,
L(B) = Sim(f(X/θf ), f(X/θp)), the bug relevance score ofB can be defined ass(B) = − log(L(B)).
An open issue is the definition of a suitable similarity function. In [36], they introduce an approach
based on a probabilistic model to approximate the values off(X/θf ) andf(X/θp) and define the bug
relevance score for a boolean featureB. Moreover they propose two algorithms (CombineRankand
UpperRank) to combine individual bug scores of B (s(B)) in order to define a global score s(F) for a
functionF .

Another method that exploits data mining methods to analyzelogical bugs is proposed in [37]. In
this work, they treat program executions as software behavior graphs and develop a method to integrate
closed graph mining and SVM classification in order to isolate suspicious regions of non-crashing bugs.
They consider that each execution of a program is summarizedas a behavior graph. Then, given a set
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of behavior graphs that are labeled either positive (incorrect runs) or negative (correct runs), the goal is
to train a classifier to identify new behavior graphs with unknown labels. The proposed classification
model consists of three steps:

– define the training dataset extracting features from behavior graphs
– learn an SVM classifier using these features
– classify new behavior graphs.

The graphs are represented as vectors in a feature space in order to apply SVM in behavior graph
classification. A naive representation is to consider the edges as features and a graph as a vector of edges.
The vector is{0, 1} valued. It takes the value ‘1’ in the dimension that corresponds to the feature(edges)
that the graph has, and ‘0’, otherwise. The similarity between two graphs is defined as the dot product
of their edges. According to the above representation of graphs, the dot product of two feature vectors is
the number of common edges that two graphs have. The hyperplane learned in this way will be a linear
combination of edges. Thus it may not achieve good accuracy when a bug is characterized by multiple
connected call and transition structures. Liu et al. observed that functions in well-designed programs
usually exhibit strong modularity in source code and in dynamic executions. Also these functions are
often grouped together to perform a specific task. The calls and transitions of these functions will be
tightly related in the whole behavior graph. The buggy code may disturb the local structure of a run
and then have an effect on its global structure. Based on thisobservations they propose to use recurrent
local structures as features. They introduce the concept offrequent graphs and define a classification
process that is based on them. Each frequent graph is treatedas a separate feature in the feature vector.
Hence, a behavior graph G is transformed into a feature vector whosei-th dimension is set to be 1
if G contains thei-th frequent graph or 0 otherwise. The authors in [37] proposed an approach for
mining closed frequent graphs from a set of behavior graphs and then used them as features. Based on
these features a classification model is trained so that assists programmers with debugging non-crashing
bugs. Moreover, an approach that measures incrementally the classification accuracy changes aiming to
identify suspicious regions in a software program.

4.4.1.1. Software failures classification
A semi-automated strategy for classifying software failures is presented in [46]. This approach is

based on the idea that ifm failures are observed over some period during which the software is executed,
it is likely that these failures are due to a substantially smaller number of distinct defects. Assume that
F = {f1, f2, . . . , fm} is the set of reported failures and that each failure is caused by just one defect.
ThenF can be partitioned intok < m subsetsF1, F2, . . . , Fk such that all of the failures inFi are caused
by the same defectdi, 1 6 i 6 k. This partitioning is called thetrue failure classification. In the sequel,
we describe the main phases of the strategy for approximating the true failure classification:

1. The software is implemented to collect and transmit to thedevelopment either execution profiles
or captured executions and then it is deployed.

2. Execution profiles corresponding to reported failures are combined with a random sample of profiles
of operational executions for which no failures were reported. This set of profiles is analyzed to
select a subset of all profile features to use in grouping related failures. A feature of an execution
profile corresponds to an attribute or element of it. For instance, a function call profile contains an
execution count for each function in a program and each countis a feature of the profile. Then the
feature selection strategy is as follows:
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Fig. 4. A clusters’ hierarchy.

– Generate candidate feature-sets and use each one to create and train a pattern classifier to
distinguish failures from the successful executions.

– Select the features of the classifier that give the best results.

3. The profiles of reported failures are analyzed using cluster analysis, in order to group together
failures whose profiles are similar with respect to the features selected in phase 2.

4. The resulting classification of failures into groups is explored in order to confirm it or refine it.

The above described strategy provides an initial classification of software failures. Depending on the
application and the user requirements these initial classes can be merged or split so that the software
failure are identified in an appropriate fashion.

In [19], two tree-based techniques for refining an initial classification of failures are proposed. Below
we present the main idea of these approaches.

4.4.1.2. Refining failures classification using dendograms
One of the strategies that has been proposed for refining initial failure classification relies on tree-like

diagram (known as dendrograms). Specifically, it uses them to decide how non-homogeneous clusters
should be split into two or more sub-clusters and to decide which clusters should be considered for
merging. A cluster in a dendrogram corresponds to a subtree that represents relationships among its
sub-clusters. The more similar two clusters are to each other, the farther away from the dendrogram
root their nearest common ancestor is. For instance, based on the dendrogram presented in Fig. 4 we
can observe that the clusters A and B are more similar than theclusters C and D. A cluster’s largest
homogeneous subtree is the largest subtree consisting of failures with the same cause. If a clustering is
too coarse, some clusters may have two or more large homogeneous subtrees containing failures with
different causes. Such a cluster should be split at the levelwhere its large homogeneous subtrees are
connected, so that these subtrees become siblings as Fig. 6 shows. If it is too fine, siblings may be
clusters containing failures with the same causes. Such siblings (clusters) should be merged at the level
of their parent as Fig. 5 depicts.

Based on these definitions, the strategy that has been proposed for refining an initial classification of
failures using dendrograms has three phases:

1. Select the number of clusters into which the dendrogram will be divided.



www.manaraa.com

428 M. Halkidi et al. / Data mining in software engineering

Fig. 5. Merging two clusters. The new cluster A contains the clusters represented by the two homogeneous sub-trees A1 and
A2.

Fig. 6. Splitting a cluster: The two new clusters (subtrees with roots A11 and A12) correspond to the large homogeneous
subtrees in the old cluster.

2. Examine the individual clusters for homogeneity by choosing the two executions in the cluster with
maximally dissimilar profiles. If the selected executions have the same or related causes, it is likely
that all of the other failures in the cluster do as well. If theselected executions do not have the same
or related causes, the cluster is not homogeneous and shouldbe split.

3. If neither the cluster nor its sibling is split by step 2, and the failures were examined have the same
cause then we merge them.

Clusters that have been generated from merging or splittingshould be analyzed in the same way, which
allow for recursive splitting or merging.

4.4.1.3. Refinement using classification trees
The second technique proposed by Francis et al., relies on building a classification tree to recognize

failed executions. A classification tree is a type of patternclassifier that takes the form of binary decision
tree. Each internal node in the tree is labeled with a relational expression that compares a numeric feature
of the object being classified to a constant splitting value.On the other hand, each leaf of the tree is
labeled with a predicted value, which is the class of interest the leaf represents.

Given the classification tree, we have to traverse the tree from the root to a leaf in order to classify an
object. At each step of the traversal prior to reach a leaf, weevaluate the expression at the current node.
When the object reaches a leaf, the predicted value of that leaf is taken as the predicted class for that
object.

In case of software failure classification problem, we consider two classes, that issuccessandfailure.
TheClassificationAndRegressionTree (CART) algorithms was used in order to build the classification
tree corresponding of software failures. Assume a trainingset of execution profiles

L = {(x1, j1), . . . , (xN , jN )}

where eachxi represents an execution profile andji is the result (success/failure) associated with it. The
steps of building the classification tree based on L are as follows:
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– The deviance of a nodet ⊆ L is defined as

d(t) =
1

Nt

∑

(

ji − j(t))
)2

whereNt is the size oft andj(t) is the average value of j in t.
– Each node t is split into two childrentR andtL. The split is chosen that maximizes the reduction in

deviance. That is, from the set of possible splits S, the optimal split is found by:

s∗ = argmins∈S

(

d(t) −
NtL

Nt

d(tR) −
NtL

Nt

d(tL)

)

– A node is declared a leaf node ifd(t) 6 β, for some thresholdβ.
– The predicted value for a leaf is the average value ofj among the executions in that leaf.

4.4.2. Frequent pattern mining and association rules
Two approaches for mining call-usage patterns from source code are presented in [31]. The first

approach is based on the idea of itemset mining. It identifiesfrequent subsets of items that satisfy at least
a user-defined minimum support. The results of applying thisapproach to source code are unordered
patterns related to the function calls. On the other hand, sequential pattern mining approach produces a
set of ordered patterns with a specified minimum support. In general terms these approaches can assist
with mining patterns of call-usage and thus identifying potential bugs in a software system.

4.5. Maintenance

A problem that we have to tackle in software engineering is the corrective maintenance of software.
It would be desirable to identify software defects before they cause failures. It is likely that many
of the failures fall into small groups, each consisting of failures caused by the same software defect.
Recent research has focused on data mining techniques whichcan simplify the problem of classifying
failures according to their causes. Specifically, these approaches requires that three types of information
about executions are recorded and analyzed: i)execution profilesreflecting the causes of the failures, ii)
auditing informationthat can be used to confirm reported failures and iii)diagnostic informationthat
can be used in determining their causes. Below we present thevarious data mining approaches used to
facilitate software maintenance (see also Table 5).

4.5.1. Clustering
In [32] a framework is presented for knowledge acquisition from source code in order to comprehend

an object-oriented system and evaluate its maintainability. Specifically, clustering techniques are used
to assist engineers with understanding the structure of source code and assessing its maintainability. The
proposed approach is applied to a set of elements collected from source code, including:

– Entities that belong either to behavioral (classes, membermethods) or structural domain (member
data).

– Attributes that describe the entities (such class name, superclass, method name etc).
– Metrics used as additional attributes that facilitate the software maintainer to comprehend more

thoroughly the system under maintenance.

The above elements specifies the data input model of the framework. Another part of the framework
is an extraction process which aim to extract elements and metrics from source code. Then the extracted
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Table 5
Mining approaches used in software maintenance

Maintenance
MINING INPUT DATA ANALYSIS
APPROACH DATA RESULTS

Searching/ SCM identification of
matching [52,34] (bug reports, bug fixes) bug-introducing

changes
Clustering [32] source code Extract significant

patterns from
the system source code
groups of similar
classes, methods, data

Clustering [54] SCM, patterns in the history
source code and the development

process
Clustering [38] source code System modules
Clustering [4] source code structure clone
Frequent pattern mining and their categorization
and Association Rules
Classification [25] commits (SCRs) classes of commits
Classification [42] source code FP& NFP modules

Classifier
Classification [16] CVS and Bugzilla stability of prediction models
Frequent pattern mining [59] source code Prediction of
and Association Rules failures,

correlations
between entities
identification of additions,
modifications,deletions
of syntactic entities

Frequent pattern mining and software Reused patterns
association rules [41] libraries
Frequent pattern mining and source code of design alternatives
Association rules [50] legacy system
Frequent pattern mining and instantiation code of usage changes
Association rules [51] software
Regression, SCM functionality
Classification[49] issue-tracking analysis

database
Classification based source code syntactic and
on Statistics semantic changes
Differencing [48] semantic changes
Mining based version history syntax&
on Statistics, of source code, semantic –
CVS annotations [20] classes hidden dependencies
Mining based on Statistics bug& comments syntax&
CVS annotations [22] modification request semantic –

file coupling
Mining via Heuristic [24] CVS annotation candidate entities

heuristics for change

information is stored in a relational database so that the data mining techniques can be applied. In the
specific approach, clustering techniques are used to analyze the input data and provide a rough grasp of
the software system to the maintenance engineer. Clustering produces overviews of systems by creating
mutually exclusive groups of classes, member data, methodsbased on their similarities. Moreover, it
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can assist with discovering programming patterns and outlier cases (unusual cases) which may require
attention.

Text clustering has also been used in software engineering,in order to discover patterns in the history
and the development process of large software projects. In [54] they have used CVSgrab to analyze
the ArgoUML and PostgreSQL repositories. By clustering therelated resources, they generated the
evolution of the projects based on the clustered file types. Useful conclusions can be drawn by careful
manual analysis of the generated visualized project development histories. For example, they discovered
that in both projects there was only one author for each majorinitial contribution. Furthermore, they
came to the conclusion that PostgreSQL did not start from scratch, but was built atop of some previous
project. An interesting evolution of this work could be a more automated way of drawing conclusions
from the development history, like for example extracting clusters labels, map them to taxonomy of
development processes and automatically extract the development phases with comments emerging from
taxonomy concepts.

Mancroridis et al. [38] proposes the use of clustering techniques in order to assist with software
development and maintenance. Introducing the concepts of inter-connectivity and intra-connectivity,
they develop a clustering algorithm that aims to partition the components of a system into compact and
well-separated clusters. Specifically, they aim to apply clustering to the module dependency graph in
order to identify significant connection among the system modules. The goal is to partition the software
system so that it maximizes the connections between the components of the same cluster and minimizes
the connections between the components of distinct clusters).

Basit et al. [4] introduced the concept of structure clone and proposed the use of mining techniques
in order to detect them in software. The procedure of detecting structural clones can assist with under-
standing the design of the system for better maintenance andwith re-engineering for reuse. According to
their approach, they extract simple clones form the source code (similar code fragments). Then they use
techniques of finding frequent closed item sets to detect recurring groups of simple clones in different
files or methods. Also clustering techniques are applied to identify significant groups of similar clones.
Also Basit et al. implement their structural clone detection technique in a tool calledClone Miner.

4.5.2. Classification
In [49] they use the data coming from more than 100.000 open source software projects lying in

the SourceForge portal, in order to build a predictive modelfor software maintenance using data and
text mining techniques. Using SAS Enterprise Miner and SAS Text Miner, they focused on collecting
values for variables concerning maintenance costs and effort from OSS projects, like Mean Time to
Recover (MTTR) an error. The task also entailed the removal of projects that were under development,
thus considering exclusively operational projects, as well as the removal of projects that did not have
a bug reports database since the absence of such prohibited the measurement of variables like MTTR.
Furthermore, they clustered the remaining projects based on their descriptions, in order to discover the
most important categories of OSS projects lying in the SourceForge database. Finally, they used the
SAS Enterprise Miner to build classifiers on the MTTR class variable, after having transformed the later
into a binary one (High or Low) using its values’ distribution. The reported results highlight interesting
correlations between features like number of downloads, use of mail messages and project age and the
class variable. For example, projects with increased age have higher MTTR than younger projects.

An approach that exploits the idea of spam filtering techniques to identify fault-prone software modules
is presented in [42]. The proposed framework is based on the fact that faulty software modules have
similar pattern of words or sentences. Mizuno et al. proposed the implementation of a tool that extracts
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fault-probe (FP) modules and non fault-prone (NPF) modulesfrom source code repositories. Then these
set of modules are used to learn a classifier that is used to classify new modules as FP or NFP.

Also an approach for classifying large commits so that understand the rationale behind them is
proposed in [25]. Though large commits are usually considered as outliers when we study source control
repositories (SCRs), they may contain useful information about the projects and their evolution. Hindle
etal. decided to exploit classification techniques in orderto classify commits and thus identify different
types of software changes. This study shows that in many cases the large commits refer to modification
of the system architecture while small commits are more often corrective.

Ekanayake et al. [16] propose a method to evaluate the stability of a prediction model. They explore
four open source projects and extract features from their CVS and Bugzilla repositories. Then they build
defect prediction models using Weka’s decision tree learner and evaluate the prediction quality over time.
This study conclude that there are significant changes over time and thus it should be used cautiously.

4.5.3. Frequent pattern mining and association rules
The work proposed by Zimmerman et al. [59] exploits the association rules extraction technique to

identify co-occurring changes in a software system. For instance, we want to discover relation between
the modification of software entities. Then we aim to answer the question when a particular source-code
entity (e.g. a function A) is modified, what other entities are also modified (e.g. the functions with names
B and C)? Specifically, a tool is proposed that parses the source code and maps the line numbers to the
syntactic or physical-level entities. These entities are represented as a triple (filename, type, id). The
subsequent entity changes in the repository are grouped as atransaction. An association rule mining
techniques is then applied to determine rules of the formB,C → A.

Sartipi et al. [50] proposes the use of clustering and association rules techniques in order to recover the
architectural design of legacy software systems accordingto user defined plans. The source code of a
legacy system is analyzed and a set of frequent itemsets is extracted from it. Using clustering and pattern
matching techniques, the proposed algorithm defined the components of the legacy system. Given a user
query, the best matching component of the system is selected. Also a score can be associated with each
possible answer (match) to the user query and thus a ranking of design alternatives can be presented to
the user for further evaluation.

An approach for identifying library reuse patterns is presented in [41]. The proposed approach
exploits association rules techniques to identify relations among classes in a library. The authors extend
the concept of traditional association rules to generalized rules so that the inheritance relationships are
taken into account. Thus an automated technique is developed for discovering reused patterns in libraries
and identifying characteristic usages of a library.

An approach for analyzing instantiation code to find usage changes in evolving frameworks is proposed
in [51]. The mining process takes as input two versions of instantiation code and exploiting frequent
pattern mining techniques aims to find patterns describing achanged usage of the framework. At the
first step, it extracts information about how the instantiation code uses the framework (which methods
are called, which framework classes are sub-classed). Thentransactions are built by combining usage
information from the two versions of each instantiation class. Finally, an association rule mining
algorithm is applied to those transactions to extract all possible change rules.

4.5.4. Change and deviation detection
The identification and fixing of bugs is one of the most common and costly tasks of software devel-

opment. The software projects manage the flow of the bugs using software configuration management
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(SCM) systems to control the bug changes, bug tracking software (such as Bugzilla) to capture bug
reports and then they record the SCM system that fixes a specific bug in the tracking system. Generally,
a bug is introduced into the software when a programmer makesa change to the system, that is, to add
a new functionality, to reconstruct the code or to repair an existing bug. When the bug is identified, it
is recorded in a bug tracking system. Subsequently, a developer could repair the bug by modifying the
project’s source code and commit the change to the SCM system. This modification is widely called
bug-fix change. The bug tracking and SCM systems are widely used, the most readily available data
concerning bugs are the bug-fix changes. There are some approaches that deals with mining a SCM
system to find those changes that have repaired a bug. There are two categories of approaches that
search for changes in the log messages: i) approaches [43] that searches for keywords such as ’Fixed’
and ’Bug’, ii) approaches that look for references to the bugreports (e.g#9843). Bug-fixing informa-
tion is useful for determining the location of a bug. This permits useful analysis, such as determining
per-file bug counts, predicting bugs, finding risky parts of software or visually revealing the relationship
between bugs and software evolution. One of the main problems with the bug-fix data is that it does
not give an indication when a bug was injected into the code and who injected it. Also bug-fix data
provide imprecise data on where a bug occurred. In order to deeply understand the phenomena related
to the introduction of bugs into the code, we need access to the actual moment and point the bug was
introduced. Thealgorithmproposed in [52] (further referred to as SZZ algorithm) is the first effort to
identify bug-introducing changes from bug-fix changes. Themain steps ofSZZcan be summarized as
follows: i) it finds bug-fix changes by locating bug identifiers or relevant keywords in change log text or
following a recorded linkage between a bug tracking system and a specific SCM commit. ii) it runs adiff
tool to determine what changed in the bug-fixes. Thediff tool returns a list of regions further, referred
to ashunks, which are different in the two files. In each hunk the deletedor modified source code is
considered as a location of a bug. iii) it tracks down the origins of the deleted or modified source code in
hunks. For this purpose it uses the built-in annotate feature of a SCM system, which computes the most
recent revision in which a line was changed and the developerwho made the change. The discovered
origins are identified as bug-introducing changes. Howeverthere some limitations of the SZZ algorithm
which can be summarized as follows:

– SCM annotation does not provide enough information to identify bug-introducing changes. Also we
have to trace the evolution of individual lines across revisions in order that the functions/methods
containment can be determined.

– All modifications are not fixes: There might be changes that are not bug-fixes. For instance, changes
to comments, black line and formatting are not bug-fixes, even though based on SCM are flagged as
such.

An approach proposed in [34] aims to tackle the above discussed problems of the SZZ algorithm. The
proposed approach exploits annotation graphs which contain information on the cross-revision mappings
of the individual lines. This allow us to associate a bug withits containing function or method. The
proposed bug-introducing identification algorithm can be employed as an initial clean-up step to obtain
high quality data sets for further analysis on causes and patterns of bug formation. The accuracy of
the automatic approach is determined using a manual approach. This implies that two human manually
verified all hunks in a series of bug-fix changes to ensure the corresponding hunks are real bug-fixes. The
main steps of the approach introduced in [34], which aims to remove false positive and false negatives
in identifying bug-introducing changes are the followings:

– Use annotation graphs that provide more detailed annotation information
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– Ignore comments, black line, format changes, outlier bug-fix revisions in which too many files were
changed

– Manually verify all hunks in the bug-fix changes

4.5.5. Mining approaches based on statistics
Many of source code version repositories repositories are examined and managed by tools such as

CVS (Concurrent Versions System) and (increasingly) its successorSubversion. These tools store
difference information access across document(s) versions, identifies and express changes in terms of
physical attributes, i.e., file and line numbers. However, CVS does not identify, maintain or provide any
change-control information such as grouping several changes in multiple files as a single logical change.
Moreover, it does not provide high-level semantics of the nature of corrective maintenance(e.g. bug-fixes).
Recently, the interest of researchers has been focused on techniques that aim to identify relationships and
trends at a syntactic-level of granularity and further associate high-level semantics from the information
available in repositories. Thus a wide array of approaches that perform mining of software repositories
(MSR) have been emerged. They are based on statistical methods and differencing techniques, and aim
to extract relevant information from the repositories, analyze it and derive conclusions within the context
of a particular interest.

4.5.5.1. Mining via CVS annotations
One approach is to utilize CVS annotation information. Gallet al. [20] propose an approach for

detecting common semantic (logical and hidden) dependencies between classes on account of addition
or modification of particular class. This approach is based on the version history of the source code
where a sequence of release numbers is maintained for each class in which its changes are recorded.
Classes that have been changed in the same release are compared in order to identify common change
patterns based onauthor nameandtime stampfrom the CVS annotations. Classes that are changed with
the same time stamp are inferred to have dependencies.

Specifically, this approach can assist with answering questions such as which classes change together,
how many times was a particular class changed, how many classchanges occurred in a subsystem
(files in a particular directory). An approach that studies the file-level changes in software is presented
in [22]. The CVS annotations are utilized to group subsequent changes into what termed modification
request (MR). The proposed approach focus on studying bug-MRs and comment-MRs to address issues
regarding the new functionality that may be added or the bugsthat may be fixed by MRs, the different
stages of evolution to which MRs correspond or identify the relation between the developer and the
modification of files.

4.5.5.2. Mining via heuristics
CVS annotation analysis can be extended by applying heuristics that include information from source

code or source code models. Hassan et al. [24] proposed a variety of heuristics (developer-based, history-
based, code-layout-based (file-based)) which are then usedto predict the entities that are candidates for a
change on account of a given entity being changed. CVS annotations are lexically analyzed to derive the
set of changed entities from the source-code repositories.Also the research in [24,59] use source-code
version history to identify and predict software changes. The questions that they answered are quite
interesting with respect to testing and impact analysis.
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Table 6
Mining approaches used in Software Reuse

Software Reuse
MINING INPUT DATA ANALYSIS
APPROACH DATA RESULTS

Frequent pattern mining and set of variables rules among
Association Rules [40] describing projects [40] features of projects
Frequent pattern mining [3] source code software design patterns
Classification [39] project variables value ranges used

describing projects [40] in successful reuse projects
Classification [30] project variables features affect

describing projects [40] software reuse

4.5.5.3. Mining via differencing
Source-code repositories contain differences between versions of source code.Thus it would be inter-

esting to mine source code repositories, identify and analyze the actual source-code differences.
An approach that aims to detect syntactic and semantic changes from a version history of C code

is presented by Raghavan [48]. According to this approach, each version is converted to an abstract
semantic graph (ASG) representation. This graph is a data structure which is used in representing
or deriving the semantics of an expression in a programming language. A top-down or bottom-up
heuristics-based differencing algorithm is applied to each pair of in-memory ASGs. The differencing
algorithm produces an edit script describing the nodes thatare added, deleted, modified or moved in
order to derive one ASG from another. The edit scripts produced for each pair of ASGs are analyzed to
answer questions from entity level changes such as how many functions and functions calls are inserted,
added or modified to specific changes such as how manyif statement conditions are changed. Also
in [12] a syntactic-differencing approach, which is calledmeta-differencing, is introduced. It allows us
to ask syntax-specific questions about differences. According to this approach the abstract syntax tree
(AST) information is directly encoded into the source code via XML format. Then we compute the
added, deleted or modified syntactic elements based on the encoded AST. The types and prevalence of
syntactic changes can be easily computed. Specifically, theapproach supports the following questions:
i) Are new methods added to an existing class?, ii) Are there changes to pre-processor directives?, iii)
Was the condition in an if-statement modified?

4.6. Software reuse

Systematic software reuse has been recognized as one of the most important aspects towards the
increase of software productivity, and quality [40,45]. Though software reuse can take many forms (e.g.,
ad-hoc, systematic), and basic technical issues such as development of software repositories, and search
engines for software components in various programming languages are on the frontier of research in the
area of software reuse, recently there have been attempts toincorporate data mining techniques in an effort
to identify the most important factors affecting the success of software reuse. The motivation behind
those approachesstems partially from the fact that previous surveys showed possibility of projects’ failure
due to the lack of reuse processes introduction, as well as modification of non-reuse processes [45].

In this direction, Morisio et al. [45] attempted to identifythe key factors that are crucial to the success of
the software reuse process in conducted projects. More specifically, they collected through an interview
process data from twenty-four European projects from nineteen companies in the period from 1994 to
1997. In their analysis, they defined 27 variables that are used to formulate the description of each
project, which are nicely summarized in [40]. Among the usedvariables, there are ten state variables
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representing attributes over which a company has no control, six high-level control variables representing
key high-level management decisions about a reuse program,ten low-level control variables representing
specific approaches to the implementation of reuse, and a variable indicating whether the project was
successful or not. Currently, this data set, though with fewexamples, constitutes the largest empirical
data set on software reuse at present, and in this data set several data mining algorithms have been applied
to identify patterns regarding the factors affecting the success of software reuse. Table summarizes the
main feature of mining techniques that have been used in software reuse.

4.6.1. Classification
In the same study ([40]), the authors also attempted the use of decision trees, and more specifically

the J.48 implementation of Weka, which is essentially the implementation of theC4.5 decision tree
algorithm [47], in order to analyze the same data. The application of theC4.5 decision tree algorithm
in this was made in a manner so that the authors were able to identify the most important features from
the 27, by conducting attribute removal experiments. More specifically, they studied what would be
the root node of the tree in each case, if at each time the most important attribute is removed (i.e., the
root node), and the tree is rebuilt without considering thatattribute. This methodology allowed them to
identify weak attributes (i.e., attributes that appear in any non-root node after several removals of root
node attributes), as well as barely supportive attributes (i.e., attributes that, once root nodes, if removed
and the tree is rebuilt disregarding them, the classification accuracy remains the same).

In addition to the aforementioned analysis, they also applied a learning algorithm calledtreatment
learning, and more specifically they applied theTAR2algorithm [39]. The basic idea behind the treatment
learner is that it selects a subsetD′ of the training setD, which contains more preferred classes and less
undesired ones. The criterion according to which the subsetis selected is based on the used treatment,
denoted asRx, and, thus,D′ should not contradict the treatment. However, theTAR2treatment learner
requires from the user to assign a numeric score to each classthat represents how much a user likes that
class. In this case, the authors weighted more the successful reuse project than an unsuccessful project,
and after the conducted analysis through the application ofTAR2, they were able to discover the features
and the respective value ranges that were mostly used in successful reuse projects. The interesting part
from the application of this data mining algorithm is the fact that the algorithm discovered features and
value ranges that the empirical study in [45] had failed to uncover, showing how important the application
of data mining can be in this case.

In another direction, but still using the same data set for software reuse, Jiang et al. [30] applied an
ensemble learning approach (i.e, an approach that combinesthe decisions of different classifiers and
attempts to get the best of all worlds) based on the notion of random forests [9]. The used ensemble
algorithm,RF2TREE(Random Forest to Tree), introduced in the same paper, has two conditions under
which it can be guaranteed to work well: (a) the original training data set is very small, like in the case
of the data set produced in [45], and (b) the random forest is more accurate than single decision tree if
both of them were directly trained from the original training data set. The algorithm first builds a random
forest from the original data set, and then the random forestis used to generate many virtual examples
that are used to train a single decision tree. Based on their conducted experiments, they discovered
that the most important features that affect the success of software reuse are: Human Factor,Reuse
Process Introduced, Type of Software Production, Application domain, Top Management Commitment,
and Nonreuse Processes Modified, which vary from the empirical analysis in [45], and the data mining
analysis in [40]. The differences, as well as the similarities of the three research works with regards to
the most important factors affecting software reuse are summarized nicely in Table 8 in the work of Jiang
et al. [30].
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4.6.2. Frequent pattern mining and association rules
Menzies and Di Stefano [40] worked on the aforementioned data set in order to examine further what

conclusions may be drawn regarding the affecting factors insoftware reuse, and also to compare the
patterns derived from applying automated data mining methodologies with the empirical conclusions
formulated in [45]. Among the methodologies they used, association rule mining was employed, in
order to extract meaningful associations between the27 features. The association rule extraction was
conducted with the Apriori algorithm [1] implementation offered by the Weka data mining platform3.
The top 10 association rules derived, setting minimum confidence at 90%, are presented in [40]. Among
the association rules derived, there are very interesting associations learned, like for example the fact
that when the produced software was embedded in a product (e.g., in contrast to being embedded in
a process, or itself being a stand-alone product), the use ofreward policy for software reuse was not
enabled (i.e.,SoftwareandProduct = product => RewardsPolicy = no).

Another important aspect of data mining in software engineering is the process of mining design
patterns from software, in order to allow for the reuse of software system design expertise. More
specifically, the process of mining focuses on extracting patterns by analyzing the code or the design of
the software system in order to trace back the design decisions made, which are usually buried inside
the source code. Typically, during the software system design, the system components are not tagged
with the respective design patterns applied, and, thus, thedesign decisions are no longer connected with
the existent system, often leading to lack of understandingof the software’s details. In this direction,
a number of techniques and tools have been proposed in the past, which attempt to mine the design
patterns from a software system.

In [14] the authors present a thorough overview of these approaches in a comparative study. Depending
on the description of each design pattern, i.e., the perspective from which it is described, the approaches
of design pattern mining can be widely classified into the ones analyzing the structural aspect only, the
behavioral aspect only, or both. There are also some approaches that attempt to analyze a combination
of the above aspects including the semantic aspect as well, which refers to the semantic meaning of
some entities in the system. From the perspective of our analysis, we focus only on the types of data
mining methods to extract those patterns. In this direction, the primal technique used is the utilization of
existing tools that transform the source code into some intermediate representation, e.g. Abstract Syntax
Trees (AST) or Abstract Semantic Graphs (ASG), and then simple search strategies are applied to the
transformed graphs, in order for patterns to be identified. This procedure of course implies that the
patterns are somehow already defined, in order for the application of the search strategy to be able to
find matches. The problem of design pattern mining from source code is then reduced to identify graph
components of the code that match already predefined patterns, which can be expressed for example in
a XML-like format [3].

The matching itself can be usually conducted through the useof sub-graph isomorphic comparison
between the code and the pattern graphs, and thus it is a form of supervised learning (patterns are
already known), using graph comparison or similarity metrics between the examined graphs and the
graph patterns.

5. Summary and open issues in mining software repositories

The recent explosive growth of our ability to collect data during the software development process has
created a need for new, scalable and efficient, tools for dataanalysis. Also there is strong requirement for

3http://www.cs.waikato.ac.nz/ml/weka/.
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mining software repositories and extracting hidden information. This extracted knowledge is expected
to assists the software engineers with better understanding the development processes and predict the
future of software products. The main focus of the discipline of data mining in software repositories is
to address this need. In this paper we review the various datamining methods and techniques used in
software engineering. Specifically our objective is to present an overview of the different data sources in
software engineering that are interesting to be mined. Alsowe discuss how the data mining approached
can be used in software engineering and what software engineering tasks can be helped by data mining.
The main characteristics of data mining approaches used in software engineering are summarized in
Tables 1–6.

One of the main issues in software engineering is the evaluation of software project and the definition
of metrics and model that give us an indication of the future of a project. Though a number of mining
approaches have been used to assist with software engineering tasks, an open issue is if and how data
mining techniques can be exploited to define novel quality metrics in software engineering.

Below we discusschallenging issues in mining software engineering repositoriesthat are interesting
and deserve further work.

– Supervised learning approaches, like text classification, based on predictive modeling techniques,
for the purposes of predicting future bugs and/or possibly affected parts of code. A measure of
future influence of bugs in the source code, associated with aweight and a prediction ranking can
show a lot for the software quality.

– Text clustering of the bug reports, and cluster’s labeling can be used to automatically createa
taxonomy of bugs in the software. Metrics in that taxonomy can be defined to show the influence
of generated bugs belonging to a specific category, to other categories of bugs. This can also be
translated as a metric of bug influence across the software project.

– Online mining. The data mining techniques that have recently been developed in software engineer-
ing conduct offline mining of data already collected and stored. However, in modern integrated SE
environments, especially collaborative environments, software engineers must be able to collect and
mine SE data online to provide immediate feedback. Thus a challenging issue is the adaptation or
development of stream mining algorithms for software engineering data so that the above mentioned
requirement are satisfied.

– Quality project classification. A classifier will be built to categorize projects as successful or non-
successful based on the data collected about projects. These data provide information about features
of projects related to the popularity, ranking of projects.The quality of the classification (i.e.
accuracy of classifier) depends on the training set. Then therequirement is to select the appropriate
set of data features based on which we will build an accurate classifier of projects.

– Association rules extraction from OSS project data. There is useful information provided for Open
Source Software projects regarding the number of downloads, the number of developers, the pop-
ularity, the vitality of the software, etc. These are considered to be metadata of the OSS project.
Analyzing thus information we can extract useful knowledgeabout OSS projects and new qual-
ity metrics could be defined. An interesting direction wouldbe to find correlations between the
metadata provided for OSS. We assume that each project can berepresented by a vector (projectid,
selectedmetadata), where metadata refers to the OSS development metrics i.e., popularity, activ-
ity, number of downloads. The subsequent project’s evaluations are stored in the repository as
transactions. Then an association rule extraction algorithm can be used to discover correlations or
co-occurrences of events in a given OSS environment.
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– Graph mining on the mailing lists of OSS projects. Based on the information provided by the
mailing list of the project we could build author and messagegraphs. Then applying mining
techniques to these graphs we can extract useful information regarding message exchange or the
users that contributes to projects. An interesting research approach will be to exploit graph processing
techniques, like PageRank or Spreading Activation so that we rank nodes in each graph. The extract
results can assist with rank users and measure relatedness between important users and important
messages.

– Pattern mining form source code. Another interesting perspective in the category of designpattern
mining approaches in software engineering, could be to apply a graph clustering approach, or in
general an unsupervised method, and examine what design patterns would be produced from the
analyzed code. This would imply the definition of a graph clustering model, where in this case the
graphs could be Abstract Syntax Trees (ASTs) or Abstract Semantic Graphs (ASGs). The model
should allow for the computation of the similarity between graphs, as well as for the computation of
cluster representatives, i.e., the centroid graph of the graphs included in each cluster. The process
would then be able to extract patterns, and which in turn could give an insight, after post-processing,
about the design patterns used, as well as the design decisions made.

– Mining bug reports. The bug report database contains useful information regarding the quality of the
software. Analyzing the data collected from the bug fixing procedure, we could extract information
about i) average impact on code change (i.e. % of files or % of lines changed), ii) estimate mean time
before bug fixing developers involved in the bug fixing procedure. iii) temporal bug distribution in
relation to project release dates.
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