Intelligent Data Analysis 15 (2011) 413-441 413
DOI 10.3233/IDA-2010-0475
I0S Press

Data mining in software engineering

M. Halkidi#, D. Spinelli¢, G. Tsatsaronisand M. Vazirgiannis*

aDepartment of Digital Systems, University of Piraeus, Birg, Greece

bDepartment of Management Science and Technology, Athdmersity of Economics and Business,
Athens, Greece

¢Department of Informatics, Athens University of Econoraitd Business, Athens, Greece

Abstract. The increased availability of data created as part of thewsoé development process allows us to apply novel
analysis techniques on the data and use the results to dudedcess’s optimization. In this paper we describe vardata
sources and discuss the principles and techniques of datagwis applied on software engineering data. Data thatearnifed

is generated by most parts of the development process:resgents elicitation, development analysis, testing, dging, and
maintenance. Based on this classification we survey thengegdproaches that have been used and categorize themiagcord
to the corresponding parts of the development process anthsk they assist. Thus the survey provides researchdrawit
concise overview of data mining techniques applied to saféwengineering data, and aids practitioners on the sateofi
appropriate data mining techniques for their work.

Keywords: Data mining techniques, KDD methods, miningwaft engineering data

1. Introduction

The recent advances in data management technology prangigithe tools and methods for efficient
collection, storage and indexing of data. Large amount tf dgproduced in software development that
software organizations collect in hope of extracting useformation and obtain better understanding of
their processes and products. Also a significantamount eh@purce Software (OSS) project metadata
is collected and maintained in software repositories. Rstance, the FLOSSmadl@roject integrates
data from several OSS projects and freely provides themvierakformats. Then there is an increasing
abundance of data stored in software engineering (SE) iteges which can play a significant role
in improving software productivity and quality. Specifigaldata in software development can refer
to programs versions, execution traces, error/bug reortsopen source packages. Mailing lists,
discussion forums and newsletters also provide usefuknimdition about a piece of software. This
explosive growth of software engineers’ ability to collactd store SE data has created a need for new,
scalable and efficient, tools for data analysis.

Data mining provides the techniques to analyze and extrae¢Ininteresting patterns from data.
Formally, it has been defined as the process of inducingquely unknown and potentially useful infor-
mation from data collections. Thus mining of software elegiing data has recently attracted the interest

*Corresponding author. E-mail: mvazirg@aueb.gr.
http://flossmole.org/.

1088-467X/11/$27.5Q1 2011 — 10S Press and the authors. All rights reserved

www.manaraa.com

414 M. Halkidi et al. / Data mining in software engineering

of researchers, emerging as a promising means to meet thefgeaftware improvement [58]. The
extracted patterns of knowledge can assist software eagimepredicting, planning, and understanding
various aspects of a project so that they can more efficienghport future development and project
management activities. There are several challengesrtiege in mining software repositories [57]:

— Complex Data Software engineers usually use individual data types tfope a software engi-
neering task. However, software engineering domain caotmplex and thus software engineering
tasks increasingly demands the mining of multiple coreslatata types to achieve the most effective
results. Moreover, there are cases that significant infdom#s not only associated with individual
data items but with the linkage among them. Thus the req@iremmf technigues that analyze com-
plex data types taking also into account the links among 3& idastronger than ever in software
engineering.

— Large-scale dataHuge amount of data are collected and stored in softwali@eedng repositories.
In most of the cases software engineers analyze only a f@Miggositories to accomplish their tasks.
However, there may be too few relevant data points in thel leafware engineering repositories
to support the mining of desirable patterns (e.g. extrattepzs among APl methods of interests).
This problem can be addressed if we are able to mine Intscedé software repositories. Also
mining techniques can be applied to many software repasstavithin an organization or across
organization or even to the entire open source world. Thaseluirement for techniques that
enable efficient mining of large scale data arises.

In this paper, we presentan overview of approaches thatedorinect the research areas of data mining
and software engineering leading to more efficient teche#sdor processing software. In Section 2,
we provide an introduction to the main data mining concepts @proaches while in Section 3 we
describe the different types of software engineering detbdan be mined. In the follow up, a discussion
takes place in Section 4 concerning the methods that haviedgiata mining techniques in the context
of software engineering. It surveys the current researah iticorporates data mining in software
engineering while it discusses on the main characteristi¢the respective approaches. Specifically,
our study is based on the following main features of the agghies: i) data mining technique used
(Section 2), ii) the software engineering data to which theyapplied (Section 3), and iii) the software
engineering tasks that they can help (Section 4). Thus,piduiger aims to introduce practitioners to
the fundamental concepts and techniques that can use intordbtain a better understanding of the
software engineering processes and potentially perfoemtmore efficiently by applying data mining.
In parallel, researchers can exploit the recent technitpuestter understand the project data, to identify
the limitations of the current processes and define metlogiks that facilitate software engineering
tasks.

To summarize, the key contributions of this work are:

— A classification of the approaches used to mine softwarenerging data, according to the software
engineering areas that assist.

— Matrix based analysis framework bridging software engimgewith data mining approaches.

— Bringing together data mining and software engineeringassh areas. A number of approaches
that use data mining in software engineering tasks are preg@roviding new work directions to
both researchers and practitioners in software engingerin

www.manaraa.com

M. Halkidi et al. / Data mining in software engineering 415
2. Data mining and knowledge discovery

The main goals of data mining apeedictionanddescription Predictionaims at estimating the future
value or predicting the course of target variables basetLaly ®f other variablesDescriptionis focused
on patterns discovery in order to aid data representatigartis a more comprehensible and exploitable
manner. A goodlescriptionsuggests a good explanation of data behavior. The relengirtance
of predictionand descriptionvaries for different data mining applications. However,regards the
knowledge discoverydlescriptiontends to be more important thamediction contrary to the pattern
recognition and machine learning application, for whicédictionis more important.

Data mining assists with software engineering tasks byaixiplg and analyzing in depth software
artifacts and processes. Based on data mining techniquesmwextract relations among software
projects. Data mining can exploitthe extracted inforntat@mevaluate the software projects and/or predict
software behavior. A number of data mining methods have pesposed to satisfy the requirements
of different applications. All of them accomplish a set otalaining functionalities to identify and
describe interesting patterns of knowledge extracted fatata set. Below we briefly describe the main
data mining tasks and how they can be used in software engigee

— Clustering — Unsupervised Learning Techniques
Clustering is one of the most useful tasks in data mining liegfor discovering groups and
identifying interesting distributions and patterns in tiederlying data. The clustering problem is
about partitioning a given data set into groups (clustanshghat the data points in a cluster are
more similar to each other than points in different clusfg&33]. In the clustering process, there
are no predefined classes and no examples that foretell tdeokidesirable relations being valid
among the data. Thus itis perceived as an unsupervisedigamocess [5]. Clustering can be used
to produce a view of the underlying data distribution as \aelhutomatically identify data outliers.
In software engineering, clustering can be used to definepgrof similar modules based on the
number of modifications and cyclomatic number metrics (tn@lper of linearly independent paths
through a program’s source code).

— Classification — Supervised Learning Techniques
The classification problem has been studied extensivelfenstatistics, pattern recognition and
machine learning areas of research as a possible solutiba kmowledge acquisition or knowledge
extraction problem [15,55]. Classification is one of the mi@isks in data mining for assigning a
data item to a predefined set of classes. Classification calederibed as a function that maps
(classifies) a data item into one of the several predefinesdeta[18]. A well-defined set of classes
and a training set of pre-classified examples charactanzelassification. On the contrary, the
clustering process does not rely on predefined classes mpesa[5]. The goal in the classification
process is to induce a model that can be used to classifyefatata items whose classification is
unknown. One of the widely used classification techniquakédsconstruction oflecision trees
They can be used to discover classification rules for a chaiseinute of a data set by systematically
subdividing the information contained in this data deecision treesre also one of the tools that
have been chosen for building classification models in thieiaoe engineering field. Figure 1 shows
a classification tree that has been constructed to providechamism for identifying risky software
modules based on attributes of the module and its systems, Blased on the given decision tree,
we can extract the following rule that assists with makingisien on errors in a module:

IF (# of data bindings> 10) AND (it is part of a non real-time systgrmiHEN
the module is unlikely to have errors

www.manaraa.com

416 M. Halkidi et al. / Data mining in software engineering

of data bindings
complexity

0-12 /\ real-time nonreal-time

of lines of code

0-1 150

Fig. 1. Classification tree for identifying risky softwaredules.

— Frequent Pattern Mining and Association Ruléssociation rules mining has attracted considerable
interest because the rules provide a concise way to staentdty useful information that is
easily understood by the end-users. Association rulearewvelerlying “correlations” between the
attributes in the data set. These correlations are prasentbe following form: A — B, where
A, B refer to attribute sets in underlying data. Therefdneytare used to extract information based
on coincidences in a data set. For instance, analyzingmigstaror logs discovered at software
modules we can extract relations between inducing evemsisdan the software module features
and errors’ categories. Such a rule would have the folloviamg:

(large/small size, large/small complexity, number of rewis) — (interface error, missing or wrong
functionality, algorithms or data structure error e}c.

— Data Characterization and SummarizatiorData characterization [23] is the summarization of
the data characteristics of a specific class of data. Theatataollected based on user-specified
requirements. These techniques can be used to discovenfgpedterns from software engineering
repositories that satisfy specific characteristics.

— Change and Deviation Detectidncuses on discovering the most significant changes in tke da
from previously measured values. Thus these technigqueassist with identifying source code
changes or identifying differences among extracted pattigom software engineering repositories.

Various approaches have been developed to accomplish tive atientioned data mining tasks and
deal with different types of data. They exploit techniquesT different aspects of data management and
data analysis, including pattern recognition, machinenieg, statistics, information retrieval, concept
and text analysis.

Text Miningis introduced as a specific case of data mining and refersetgtbcess of deriving
information from text. Software engineering repositor@mong others, include textual information like
source code, mailing lists, bug reports and execution |ddse mining of textual artifacts is requisite
for many important activities in software engineeringcing of requirements; retrieval of components

www.manaraa.com

M. Halkidi et al. / Data mining in software engineering 417

Preprocessing

Storage and Indexing

Feature Extraction

Structured Representation

Term Weighting

Boolean

Dimensionality Reduction

Vector

Text Keyword Characterization

Probabilistic
_ Natural Language Processing _

Non-Overlapping Lists

Part of Speech Tagging

Proximal Nodes

Document Word Sense Disambiguation

Collection Semi-Structured Representation
Summarization

Graph

Phrase Detection

Link Analysis

Entity Recognition

Meta-data

Word Thesauri/Domain Ontologies

Text Mining

Processing
< O Structured and/or

Classification ' l semi-structured data

Retrieval Models/
Patterns/
Social Analysis Answers

Clustering

Domain Ontology Evolution

Fig. 2. Preprocessing, Storage and Processing of TextsirMiaing.

from a repository; identify and predict software failuresftware maintenance; testing etc. The methods
deployed in text mining, depending on the application, llguaquire the transformation of the texts
into an intermediate structured representation, whichbeafor example the storage of the texts into a
database management system, according to a specific schremany approaches though, there is gain
into also keeping a semi-structured intermediate form eftéxts, like for example the representation
of documents in a graph, where social analysis and grapmicpods can be applied. Independently
from the task objective, text mining requires preprocegsathniques, usually levying qualitative and
guantitative analysis of the documents’ features. In [[L&G@veral preprocessing and feature analysis
technigues are discussed for text mining. In Fig. 2, therdimgdepicts the most important phases of the
preprocessing analysis, as well as the most important texhgitechniques.

3. Software engineering data

The nature of the data being used by data mining technigussfiware engineering can act as
distinguishing means of the underlying methods, sincefétctéd the preprocessing as well as the post

www.manaraa.com

418 M. Halkidi et al. / Data mining in software engineering

analysis. Below we present the various sources of softwagaeering data to which data mining has
been applied. The presentation also tries to reflect thedliffi of preparing the data for processing.

3.1. Documentation

Software documentation data are of high importance butrdden of high complexity for being
processed by data mining techniques. Application, systhmrastration and source code documentation
constitute a large buffer of documents and free text fomgrie analysis and mining. Among the pieces
of text information that can be considered of great valueuf® in mining techniques are the software
description, start up and usage configuration, user guitle nfanagement issues, logging, license
and compatibility issues. Besides external software da&suation, internal documentation might also
play the role of important data source. Most of the documamtahough lies in several different
types of documents, like portable document format, htmdf taly and typesetting system files. An
analytical reference of all possible types of software doentation data can be found in [53]. Due
to the large variety of document types and text data used,necessary that a preprocessing module
for documentation data is able to use parsers of all the e@ndoned types of documents. Another
important source of information that lies in software doemtation are the multimedia data. Figures, as
well as audio and video instructions, can all be considefedided information value. In such cases,
multimedia mining techniques must be incorporated to &ekth the pre- and post-processing, raising
the overall processing overhead.

3.2. Software configuration management data

Data rising from software configuration management syst$aVs) among others may include
software code, documents, design models, status accgudgfect tracking as well as revision control
data (documentation and comments escorting softwareovessi the adopted CVS). In [17] the evolution
of SCMs from the early days of software development to preisediscussed, where additionally the
impact of research in the field of SCMs is depicted. Indepetigl®f the underlying version control
system (centralized or distributed) the amount of datalavie from SCMs is large and thus a careful
study and clean understanding of the software domain isatkad thus the most valuable data are kept.
The majority of the SCMs data is structured text.

Decentralized source code management (DSCM) systems sisaynificant growth the last years.
Bird et al. have studied the main properties of theses sysieifY] and discussed the advantages and
risks that decentralization brings in mining software eegring data. DSCMs can provide software
engineering researchers with new and useful data whichlernhém to better understand software
processes. However the DSCM data should be mined with card.eBal. in their work have noted
potential pitfalls that one may encounter when analyzimgdhta since there are differences in semantics
of terms used in centralized and decentralized source cati@agement systems.

3.3. Source code

Source code for data mining in software engineering can beegr an important source of data.
Various data mining applications in software engineeriagehemployed source code to aid software
maintenance, program comprehension and software comf@raralysis. The details of these ap-
proaches are discussed in section 4. An initial preprongssithe available source code is always a
caveat, since a parser for the respective source code lgaguast be available. Once parsed, the source

www.manaraa.com

M. Halkidi et al. / Data mining in software engineering 419

code can be seen as structured text. Central aspects ofrapdhta mining technigues in source code
among others include prediction of future changes througting change history, predicting change
propagation, faults from cached history, as well as predialefect densities in source code files.

3.4. Compiled code and execution traces

Compiled code constitutes in its form of object code one efédlternative data sources for applying
static analysis in software engineering. Compiled codedfss been used as a data source from data
mining techniques in order to assist malicious softwarect&in. Furthermore, web mining principles
have been widely used in object-oriented executables istgg®gram comprehension for means of
reverse engineering. When the software modules and compmage tested, a chain of events occurs
which are recorded in an execution trace. Execution patbéming has also been used in execution traces
under the framework of dynamic analysis to assist with theekon of software systems’ functionalities.

3.5. Issue-tracking and bug databases

Issue-tracking or bug reporting databases constitute tist important cesspool of issue reporting in
software systems. Structured data (database tuples)imiogtéhe description of an issue, the reporter’s
details and date/time are the standard three types of imfitom that can be found in issue-tracking
databases. Machine learning techniques have been sudbesskd in the past to predict correct
assignments of developers to bugs, cleaning the datalmmserianifestations of the same error, or even
predicting software modules that are affected at the sameftiom reported bugs.

3.6. Mailing lists

Large software systems, and especially open source seftaffer mailing lists as a means of bridging
users and developers. Mailing lists constitute hard dataeghey contain a lot of free text. Message and
author graphs can be easily pulled up from the data, but nbatelysis is hard since probably messages
constituting replies need to consider initial and/or poengi discussions in the mailing lists. Data mining
applications in mailing lists among others include but aoé Imited to text analysis, text clustering
of subjects discussed, and linguistic analysis of messageighlight the developers personalities and
profiles.

4. Data mining for software engineering

Due to its capability to deal with large volumes of data ascfficiency to identify hidden patterns of
knowledge, data mining has been proposed in a number ofrodseark as mean to support industrial
scale software maintenance, debugging, testing. The qirgaults can help software engineers to
predict software failures, extract and classify commonshudentify relations among classes in a
libraries, analyze defect data, discover reused pattesilirce code and thus automate the development
procedure. In general terms, using data mining practitoaed researchers can explore the potential
of software engineering data and use the mining resultsderaio better manage their projects and
to produce higher quality software systems that are deltven time and on budget. In the following
sections we discuss the main features of mining approabhtbave been used in software engineering
and how the results can be used in the software engineefegyicle. We classify the approaches
according to the software engineering tasks that they hedglee mining technigues that they use.

www.manaraa.com

420 M. Halkidi et al. / Data mining in software engineering

Table 1
Mining approaches used in Requirement Elicitation andifitac

Requirement Elicitation

MINING INPUT DATA ANALYSIS
APPROACH DATA RESULTS
Classification ([26],[27]) Documentation requirements
Information [21] SCM, requirements
retrieval, mailing lists

Data Summarization CVS logs

4.1. Requirement elicitation and tracing

In this section we discuss how data analysis technigues catrilsute to educe or trace system
requirements. The works for requirement analysis refedata mining in its broadest sense, including
certain related activities and methodologies from siatisimachine learning and information retrieval.
Table 1 summarizes the main features of the techniquessdiedibelow.

4.1.1. Classification

A recent approach, presented in [26], has focused on impgavie extraction of high level and low
level requirements using information retrieval. More sfieglly, they consider the documents’ universe
as being the union of the design elements and the individugiirements and they map the problem of
requirements tracing into finding the similarities betwé®nvector-space representations of high level
and low level requirements, thus reducing it into an IR ta&&.an expansion of this study, in [27], the
authors focused on discovering the factors that affect atyats’ behavior when working with results
from data mining tools in software engineering. The wholglgtwas based on the verified hypothesis
thatthe accuracy of computer-generated candidate tracestaftbe accuracy of traces produced by
the analyst The study presents how the performance of tools that exiigb level and low level
requirements through the use of information retrievak@#t the time consumed by an analyst to submit
feedback, as well as her performance. Results reveal tteatdaing systems exhibiting low recall result
in a time consuming feedback from the analyst. In paraligh hecall leads to a large number of false
positive thus prompting the analyst cut down large numbeaeqtiirements, dimming recall. Overall
reported results reveal that the analyst tends to balamoisgyn and recall at the same levels.

4.1.2. Data summarization

From another perspective, text mining has been used in agdtengineering to validate the data from
mailing lists, CVS logs, and change log files of open sourdeveoe. In [21] they created a set of
tools, namely SoftChandgethat implements data validation from the aforementioreed $ources of
open source software. Their tools retrieve, summarize afidate these types of data of open source
projects. Part of their analysis can mark out the most aclixezlopers of an open source project. The
statistics and knowledge gathered by SoftChange analgsisxot been exploited fully though, since
further predictive methods can be applied with regard tgrfrants of code that may change in the future,
or associative analysis between the changes’ importargtéhanindividuals (i.e. were all the changes
committed by the most active developer as important as steirescale and in practice?).

2Publicly available at http://sourcechange.sourcefomgé.

www.manaraa.com

M. Halkidi et al. / Data mining in software engineering 421

Table 2
Mining approaches used in Software Development

Development

MINING INPUT DATA ANALYSIS
APPROACH DATA RESULTS
Clustering [29] source code software

(Social network processes
analysis)

Classification [56] SCM, track of bugs

text retrieval source code

Frequent pattern mining [44] defect defect correction
and Association Rules data effort rules

Frequent pattern mining [11] program dependence graph eatsgl conditions
and Association Rules

4.2. Development analysis

This section provides an overview of mining approaches tsadsist with development process. We
summarize the main features of these approaches in Table 2.

4.2.1. Clustering

Text mining has also been used in software engineering fecodiering development processes.
Software processes are composed of events such as relatiagents, tools, resources, and activities
organized by control flow structures dictating that setsvaingés execute in serial, parallel, iteratively,
or that one of the set is selectively performed. Software@se discovery takes as input artifacts of
development (e.g. source code, communication transcefmg and aims to elicit the sequence of events
characterizing the tasks that led to their development. 28] fn innovative method of discovering
software processes from open source software Web repesitsrpresented. Their method contains
text extraction technigues, entity resolution and sooivork analysis, and it is based on the process
of entity taxonomies. Automatic means of evolving the taxog using text mining tasks could have
been levied, so that the method lacks strict dependencyst@ionomy’s actions, tools, resources and
agents. An example could be the use of text clustering ongka software text resources and extraction
of new candidate items for the taxonomy arising from thetelts labels.

In [6], they used as text input the Apache developer mailisgg |Entity resolution was essential,
since many individuals used more than one alias. After coashg the social graph occurring from
the interconnections between poster and replier, they maweial network analysis and came to really
important findings, like the strong relationship betweeragmactivity and source code level activity.
Furthermore, social network analysis in that level revédle important nodes (individuals) in the
discussions. Though graph and link analysis were engag#ieimethod, the use of node ranking
techniques, like PageRank, or other graph processingitpodmlike Spreading Activation, did not take
place.

4.2.2. Classification

Source code repositories stores a wealth of informationh ithaot only useful for managing and
building source code, but also provide a detailed log howstlugce code has evolved during development.
Information regarding the evidence of source code refagonill be stored in the repository. Also as
bugs are fixed, the changes made to correct the problem aredezt As new APIs are added to the
source code, the proper way to use them is implicitly exgldiim the source code. Then, one of the
challenges is to develop tools and techniques to autontigtedract and use this useful information.

www.manaraa.com

422 M. Halkidi et al. / Data mining in software engineering

In [56], a method is proposed which uses data describing xég finined from the source code
repository to improve static analysis techniques used tbifirgs. It is a two step approach that uses the
source code change history of a software project to asdistrefining the search for bugs.

The first step in the process is ittentify the types of bughat are being fixed in the software. The
goal is to review the historical data stored for the softwangect, in order to gain an understanding of
what data exists and how useful it may be in the task of bugrfgsli Many of the bugs found in the CVS
history are good candidates for being detected by statistitysis, NULL pointer checks and function
return value checks.

The second step is tuuild a bug detectodriven by these findings. The idea is to develop a function
return value checker based on the knowledge that a spegifcdf/bug has been fixed many times in
the past. Briefly, this checker looks for instances where¢@n value from a function is used in the
source code before being tested. Using a return value caegahipassing it as an argument to a function,
using it as part of calculation, de-referencing the valueiff a pointer or overwriting the value before
it is tested. Also, cases that return values are never shyrétke calling function are checked. Testing a
return value means that some control flow decision reliehewalue.

The checker does a data flow analysis on the variable holdmgeturned value only to the point of
determining if the value is used before being tested. It bingentifies the original variable the returned
value is stored into and determines the next use of thathlaria

Moreover, the checker categorizes the warnings it findsantwof the following categories:

— Warnings are flagged for return values that are completely
ignored or if the return value is stored but never used.

— Warnings are also flagged for return values that are used aicalation before being tested in a
control flow statement.

Any return value passed as an argument to a function befong bested is flagged, as well as any
pointer return value that is de-referenced without beistet:

However there are types of functions that lead the statityasisgprocedure to produce false positive
warnings. If there is no previous knowledge, it is difficaltéll which function does not need their return
value checked. Mining techniques for source code repgsitan assist with improving static analysis
results. Specifically, the data we mine from the source cegesitory and from the current version of
the software is used to determine the actual usage patteeaéd function.

In general terms, it has been observed that the bugs cathiodrig databases and those found by
inspecting source code change histories differ in type awmdl lof abstraction. Software repositories
record all the bug fixed, from every step in development peand thus they provide much useful
information. Therefore, a system for bug finding technigisegroved to be more effective when it
automatically mines data from source code repositories.

4.2.3. Frequent pattern mining and association rules

An approach is proposed in [44] that exploits associatidesraxtraction techniques to analyze defect
data. Software defects include bugs, specification andjdetianges. The collected defect data under
analysis are nominal scale variables such as descriptidefett, priority to fix a defect and its status
as well as interval and ratio scale variable regarding def@cection effort and duration. An extended
association rule mining method is applied to extract useformation and reveal rules associated with
defect correction effort.

The problem of discovering neglected conditions (missiathg, missing conditions, and missing
cases) in software is studied in [11]. Chang et al. propokeduse of graph mining techniques to

www.manaraa.com

M. Halkidi et al. / Data mining in software engineering 423

Table 3
Mining approaches used in software testing
Testing
MINING INPUT DATA ANALYSIS
APPROACH DATA RESULTS
Classification[35] I/O variables a network producing
of software sets for
system function testing
Clustering [13] execution profiles clusters of executioofies

Clustering, Classification [8] program executions softnaehavior classifiers

discover implicit conditional rules in a code base and taal®r rule violations that indicate neglected
condition. They represent programs and conditional prognang rules in terms of dependence graphs.
Then they use frequent item set mining and frequent subgraping techniques to discover conditional
rules involving preconditions and postconditions of fumctcalls as well as discover violations of those
rules.

4.3. Testing

The evaluation of software is based on tests that are designsoftware testers. Thus the evaluation
of test outputs is associated with a considerable effort toppdn testers who often have imperfect
knowledge of the requirements specification.

Data mining approaches can be used for extracting usefutir#tion from the tested software which
can assist with the software testing. Specifically, the éedldata mining models of tested software can
be used for recovering missing and incomplete specificatidasigning a set of regression tests and
evaluating the correctness of software outputs when et releases of the system. A regression test
library should include a minimal number of tests that covepassible aspects of system functionality.
To ensure effective design of new regression test caseshameo recover the actual requirements of
an existing system. Thus, a tester has to analyze systerificpans, perform structural analysis of
the system’s source code and observe the results of systecaten in order to define input-output
relationships in tested software.

Table 3 summarizes the main data mining techniques thatsaekio the context of software testing.

4.3.1. Clustering

In[13] a method is proposed that exploits the cluster afigigethods to select the set of executions that
will be evaluated for conformance to requirements. The psegd approach assumes a set of execution
profiles that have been defined executing the software veusider test on a given set of program inputs.
A clustering algorithm is used to filter profiles based onrtiségnilar characteristics. Then execution
profiles are selected from the resulting clusters.

An approach that aims to analyze a collection of programetetions and define classifiers of software
behavior is proposed in [8]. According to this work, Markowdels are used to encode the execution
of profiles of projects. Then the Markov models of individpabgram executions are clustered using
an agglomerative clustering algorithm. The clusteringcpoure aims to aggregate the similar program
execution and thus define effective classifiers of progranabier. Also a bootstrapping is used as an
active learning technique so that the learning classifgett@ined in a incremental fashion. Specifically,
it assists with identifying new training instances for thessifiers and then the classifiers can be retrained
using the expanded set of training instances.

www.manaraa.com

424 M. Halkidi et al. / Data mining in software engineering

Layer 0
Root Node

Layer 1
3 equivalence classes

Layer 2
2 equivalence classes

Target Layer
3 Values

Fig. 3. An example of Info-Fuzzy Network structure.

4.3.2. Classification

An approach that aims to automate the input-output anatysizecution data based on a data mining
methodology is proposed in [35]. This methodology relieshminfo-fuzzy networklFN) which has an
‘oblivious’ tree-like structure. The network componemtslude the root node, a changeable number of
hidden layers (one layer for each selected input) and tigetéoutput) layer representing the possible
output values. The same input attribute is used across @sof a given layer (level) while each target
node is associated with a value (class) in the domain of atattyibute. If the IFN model is aimed at
predicting the values of a continuous target attribute tainget nodes represent disjoint intervals in the
attribute range.

A hidden laye, consists of nodes representing conjunctions of valuebeofitstl input attributes,
which is similar to the definition of an internal node in a stard decision tree. The final (terminal)
nodes of the network represent non-redundant conjunatitinput values that produce distinct outputs.
Considering that the network is induced from execution datasoftware system, each interconnection
between a terminal and target node represents a possilpletaiita test case. Figure 3 presents an IFN
structure.

A separate info-fuzzy network is constructed to represach®utput variable.

The main modules of the IFN-based environment presentetbirglre:

— Legacy systerfLS). This module represents a program, a component or a systém tested in
subsequent versions of the software.

— Specification of Application Inputs and Outp(BAI0. Basic data on each input and output variable
in the Legacy System.

— Random test generatgRTG). This module generates random combinations of valuessimahge
of each input variable.

— Test bedTB). This module feeds training cases generated by the RTG lmtalthe LS.

The IFN algorithm is trained on inputs provided by RTG andpoitg obtained from a legacy system
by means of the Test Bed module. A separate IFN module isfouiiach output variable.

The IFN algorithm takes as input the training cases thatardamly generated by the RTG module
and the outputs produced by LS for each test case. The IFNithlgorepeatedly runs to find a subset

www.manaraa.com

M. Halkidi et al. / Data mining in software engineering 425

Table 4
Mining approaches used in Debugging
Debugging
MINING INPUT DEBUGGING
APPROACH DATA RESULTS
Probabilistic test suite of program detection of
classification [36] input and desired output logical errors
SVM classification [37] program executions logical bugs
Classification, execution profilds decision tree of
Decision trees [19,46] result(success/failure) faileelogtions
Frequent pattern mining source code patterns
and Association Rules [31] of call-usage

of input variables relevant to each output and the corredipgrset of non-redundant test cases. Actual
test cases are generated from the automatically detectéchdance classes by using an existing testing

policy.
4.4. Debugging

Program logic errors rarely incur memory access violatlmrgyenerate incorrect outputs. A number
of mining techniques have been used to identify logic errat assist with software debugging (see
Table 4).

4.4.1. Classification

An approach that aims to investigate program logic errgpsaposed in [36]. Liu et al. develop a data
mining algorithm that can assist programmers’ manual dgimgg They introduce a statistical approach
to quantify the bug relevance of each condition statemeahtlaen develop two algorithms to locate the
possible buggy functions.

The proposed model considers a test siijte, for a programpP, where each test casg= (d;, 0;)
has an inputd; and the desired outpui;. We say that P passes the test cgsié and only if the
output of execution P on; is identical too;. Then we can partition the test suite T into two disjoint
subsetsT;, and T, corresponding to the passing and failing cases resp8ctiva this work, they
instrument each condition statementfirto collect the evaluation frequencies at runtime. Spedifica
they consider the boolean expression in each conditioaretit as one distintioolean feature Also
assuming that X is the random variable for the boolean bias lwdolean featurés, we usef(X/6,)
andf (X/6;) to denote the underlying probability model that generdtesibolean bias aB for cases
from T, and Ty respectively. Then we claim that a boolean feathres relevant to the program error
if its underlying probability modef (X/6;) diverges fromf(X/6,). If L(B) is a similarity function,
L(B) = Sim(f(X/0y), f(X/6,)), the bug relevance score Bfcan be defined ag B) = — log(L(B)).

An open issue is the definition of a suitable similarity fuant In [36], they introduce an approach
based on a probabilistic model to approximate the valug§ &f/6) and f(X/6,) and define the bug
relevance score for a boolean featd#e Moreover they propose two algorithm@dmbineRanland
UpperRankto combine individual bug scores of B((B)) in order to define a global score s(F) for a
function F.

Another method that exploits data mining methods to analygeal bugs is proposed in [37]. In
this work, they treat program executions as software behgvaphs and develop a method to integrate
closed graph mining and SVM classification in order to isnRispicious regions of non-crashing bugs.
They consider that each execution of a program is summaasagedbehavior graph. Then, given a set

www.manaraa.com

426 M. Halkidi et al. / Data mining in software engineering

of behavior graphs that are labeled either positive (ireminuns) or negative (correct runs), the goal is
to train a classifier to identify new behavior graphs with mmkn labels. The proposed classification
model consists of three steps:

— define the training dataset extracting features from behavaphs
— learn an SVM classifier using these features
— classify new behavior graphs.

The graphs are represented as vectors in a feature spacgeintorapply SVM in behavior graph
classification. A naive representation is to consider tlgeeas features and a graph as a vector of edges.
The vectorig(0, 1} valued. It takes the value ‘1’ in the dimension that corressto the feature(edges)
that the graph has, and ‘0", otherwise. The similarity betwevo graphs is defined as the dot product
of their edges. According to the above representation gftggathe dot product of two feature vectors is
the number of common edges that two graphs have. The hyperfdarned in this way will be a linear
combination of edges. Thus it may not achieve good accur&dena bug is characterized by multiple
connected call and transition structures. Liu et al. obs@dthat functions in well-designed programs
usually exhibit strong modularity in source code and in dygitaexecutions. Also these functions are
often grouped together to perform a specific task. The callstaansitions of these functions will be
tightly related in the whole behavior graph. The buggy coasy misturb the local structure of a run
and then have an effect on its global structure. Based omHsisrvations they propose to use recurrent
local structures as features. They introduce the concefpeqfient graphs and define a classification
process that is based on them. Each frequent graph is trasedeparate feature in the feature vector.
Hence, a behavior graph G is transformed into a feature wvedtosei-th dimension is set to be 1
if G contains thei-th frequent graph or 0 otherwise. The authors in [37] preposn approach for
mining closed frequent graphs from a set of behavior graptgtzen used them as features. Based on
these features a classification model is trained so thattaggbgrammers with debugging non-crashing
bugs. Moreover, an approach that measures incrementallyldlsification accuracy changes aiming to
identify suspicious regions in a software program.

4.4.1.1. Software failures classification

A semi-automated strategy for classifying software fafurs presented in [46]. This approach is
based on the idea thatii failures are observed over some period during which theveoét is executed,
it is likely that these failures are due to a substantiallyalen number of distinct defects. Assume that
F ={f1, f2,..., fm} is the set of reported failures and that each failure is chbggust one defect.
ThenF can be partitioned intb < m subsetd’, Iy, ..., F} such that all of the failures iR; are caused
by the same defedt;, 1 < ¢ < k. This partitioning is called theue failure classificationIn the sequel,
we describe the main phases of the strategy for approximttatrue failure classification:

1. The software is implemented to collect and transmit todineelopment either execution profiles
or captured executions and then it is deployed.

2. Execution profiles corresponding to reported failurescambined with a random sample of profiles
of operational executions for which no failures were repdrtThis set of profiles is analyzed to
select a subset of all profile features to use in groupinde@lailures. A feature of an execution
profile corresponds to an attribute or element of it. Forainsg, a function call profile contains an
execution count for each function in a program and each dsunteature of the profile. Then the
feature selection strategy is as follows:

www.manaraa.com

M. Halkidi et al. / Data mining in software engineering 427

Fig. 4. A clusters’ hierarchy.

— Generate candidate feature-sets and use each one to cnelteaim a pattern classifier to
distinguish failures from the successful executions.
— Select the features of the classifier that give the besttsesul

3. The profiles of reported failures are analyzed using etuahalysis, in order to group together
failures whose profiles are similar with respect to the feztiselected in phase 2.
4. The resulting classification of failures into groups iplexed in order to confirm it or refine it.

The above described strategy provides an initial classific®f software failures. Depending on the
application and the user requirements these initial ctkasaa be merged or split so that the software
failure are identified in an appropriate fashion.

In [19], two tree-based techniques for refining an initialsdification of failures are proposed. Below
we present the main idea of these approaches.

4.4.1.2. Refining failures classification using dendograms

One of the strategies that has been proposed for refininglifatlure classification relies on tree-like
diagram (known as dendrograms). Specifically, it uses tltedetide how non-homogeneous clusters
should be split into two or more sub-clusters and to decidehvhlusters should be considered for
merging. A cluster in a dendrogram corresponds to a sublti@erépresents relationships among its
sub-clusters. The more similar two clusters are to eachr,athe farther away from the dendrogram
root their nearest common ancestor is. For instance, bas#éteodendrogram presented in Fig. 4 we
can observe that the clusters A and B are more similar thacltisters C and D. A cluster’s largest
homogeneous subtree is the largest subtree consistingurefawith the same cause. If a clustering is
too coarse, some clusters may have two or more large homoggsebtrees containing failures with
different causes. Such a cluster should be split at the lgkiere its large homogeneous subtrees are
connected, so that these subtrees become siblings as Hgw&.s If it is too fine, siblings may be
clusters containing failures with the same causes. Sutihgsb(clusters) should be merged at the level
of their parent as Fig. 5 depicts.

Based on these definitions, the strategy that has been o pmsrefining an initial classification of
failures using dendrograms has three phases:

1. Select the number of clusters into which the dendrograirbeidivided.

www.manaraa.com

428 M. Halkidi et al. / Data mining in software engineering

————————— l[A
1 al
| Merge

IIIII:§>IFIEI_‘II |A2I |

Fig. 5. Merging two clusters. The new cluster A contains tlusters represented by the two homogeneous sub-trees Al and
A2.

Split

Fig. 6. Splitting a cluster: The two new clusters (subtreéh wots A1l and A12) correspond to the large homogeneous
subtrees in the old cluster.

2. Examine the individual clusters for homogeneity by clingthe two executions in the cluster with
maximally dissimilar profiles. If the selected executioaséithe same or related causes, it is likely
that all of the other failures in the cluster do as well. If sedected executions do not have the same
or related causes, the cluster is not homogeneous and stws|ulit.

3. If neither the cluster nor its sibling is split by step 2ddhe failures were examined have the same
cause then we merge them.

Clusters that have been generated from merging or splitiogld be analyzed in the same way, which
allow for recursive splitting or merging.

4.4.1.3. Refinement using classification trees

The second technique proposed by Francis et al., relies itdirtgua classification tree to recognize
failed executions. A classification tree is a type of pattdassifier that takes the form of binary decision
tree. Each internal node in the tree is labeled with a ralatiexpression that compares a numeric feature
of the object being classified to a constant splitting val@a the other hand, each leaf of the tree is
labeled with a predicted value, which is the class of intetfess|eaf represents.

Given the classification tree, we have to traverse the tme the root to a leaf in order to classify an
object. At each step of the traversal prior to reach a leakveduate the expression at the current node.
When the object reaches a leaf, the predicted value of thhiddaken as the predicted class for that
object.

In case of software failure classification problem, we cdastwo classes, that giccesandfailure.
TheClassificatiolPAnd Regressio ree (CART) algorithms was used in order to build the classifbn
tree corresponding of software failures. Assume a traisgtgf execution profiles

L={(z1,51),...,(xn,jNn)}

where each; represents an execution profile afads the result (success/failure) associated with it. The
steps of building the classification tree based on L are ésael

www.manaraa.com

M. Halkidi et al. / Data mining in software engineering 429

— The deviance of a nodeC L is defined as

) = 5 3 (i = 7(6)°

whereN, is the size of andj(t) is the average value of jin t.
— Each node tis split into two children; andt;,. The split is chosen that maximizes the reduction in
deviance. That is, from the set of possible splits S, thengdtsplit is found by:

NtL NtL
d(t
N, N, (t2)

— A node is declared a leaf nodedft) < 3, for some threshold.
— The predicted value for a leaf is the average valug afnong the executions in that leaf.

d(tr) —

s* = argmingeg (d(t) —

4.4.2. Frequent pattern mining and association rules

Two approaches for mining call-usage patterns from souock @re presented in [31]. The first
approach is based on the idea of itemset mining. It idenfifeegient subsets of items that satisfy at least
a user-defined minimum support. The results of applyingdbisroach to source code are unordered
patterns related to the function calls. On the other hargljesatial pattern mining approach produces a
set of ordered patterns with a specified minimum support.elmegal terms these approaches can assist
with mining patterns of call-usage and thus identifyinggumtial bugs in a software system.

4.5. Maintenance

A problem that we have to tackle in software engineering ésdbrrective maintenance of software.
It would be desirable to identify software defects beforeytlcause failures. It is likely that many
of the failures fall into small groups, each consisting adluf@s caused by the same software defect.
Recent research has focused on data mining techniques wducsimplify the problem of classifying
failures according to their causes. Specifically, theseagahes requires that three types of information
about executions are recorded and analyzexkegution profileseflecting the causes of the failures, ii)
auditing informationthat can be used to confirm reported failures anddiijgnostic informatiorthat
can be used in determining their causes. Below we presenatits data mining approaches used to
facilitate software maintenance (see also Table 5).

4.5.1. Clustering

In [32] a framework is presented for knowledge acquisitiamf source code in order to comprehend
an object-oriented system and evaluate its maintaingb8pecifically, clustering techniques are used
to assist engineers with understanding the structure etsamode and assessing its maintainability. The
proposed approach is applied to a set of elements colleateddource code, including:

— Entities that belong either to behavioral (classes, memiwhods) or structural domain (member
data).

— Attributes that describe the entities (such class namersigss, method name etc).

— Metrics used as additional attributes that facilitate thftvgare maintainer to comprehend more
thoroughly the system under maintenance.

The above elements specifies the data input model of the Warke Another part of the framework
is an extraction process which aim to extract elements aidasé&om source code. Then the extracted

www.manaraa.com

430

Table 5

M. Halkidi et al. / Data mining in software engineering

Mining approaches used in software maintenance

Maintenance

MINING INPUT DATA ANALYSIS
APPROACH DATA RESULTS
Searching/ SCM identification of

matching [52,34] (bug reports, bug fixes)

Clustering [32] source code

Clustering [54] SCM,

source code

source code
source code

Clustering [38]
Clustering [4]

Frequent pattern mining
and Association Rules
Classification [25]
Classification [42]

commits (SCRs)
source code

Classification [16]
Frequent pattern mining [59]
and Association Rules

CVS and Bugzilla
source code

software
libraries
source code of
legacy system
instantiation code of

Frequent pattern mining and
association rules [41]
Frequent pattern mining and
Association rules [50]
Frequent pattern mining and

Association rules [51] software

Regression, SCM

Classification[49] issue-tracking
database

Classification based source code
on Statistics

Differencing [48]

Mining based

on Statistics,

CVS annotations [20]
Mining based on Statistics

CVS annotations [22]

version history
of source code,
classes

bug comments
modification request

CVS annotation
heuristics

Mining via Heuristic [24]

bug-introducing
changes
Extract significant
patterns from
the system source code
groups of similar
classes, methods, data
patterns in the history
and the development
process
System modules
structure clone
and their categorization

classes of commits
RPNFP modules
Classifier
stability of prediationodels
Prediction of
failures,
correlations
between entities
identification of additions,
modifications,deletions
of syntactic entities
Reused patterns

design alteezati

usagege®

functionality
analysis

syntactic and
semantic changes
semantic changes
syntax
semantic —
hidden dependencies
syntaf
semantic —
file coupling
candidate enstie
for change

information is stored in a relational database so that ti& oléning techniques can be applied. In the
specific approach, clustering techniques are used to antiigzinput data and provide a rough grasp of
the software system to the maintenance engineer. Clugteraduces overviews of systems by creating
mutually exclusive groups of classes, member data, metbasisd on their similarities. Moreover, it

www.manaraa.com

M. Halkidi et al. / Data mining in software engineering 431

can assist with discovering programming patterns andesutkses (unusual cases) which may require
attention.

Text clustering has also been used in software engineénimgder to discover patterns in the history
and the development process of large software projectsb4hthey have used CVSgrab to analyze
the ArgoUML and PostgreSQL repositories. By clustering ttblated resources, they generated the
evolution of the projects based on the clustered file typesefl) conclusions can be drawn by careful
manual analysis of the generated visualized project dpuwedmt histories. For example, they discovered
that in both projects there was only one author for each majtial contribution. Furthermore, they
came to the conclusion that PostgreSQL did not start fromtsiey but was built atop of some previous
project. An interesting evolution of this work could be a mautomated way of drawing conclusions
from the development history, like for example extractimgsters labels, map them to taxonomy of
development processes and automatically extract theafmweint phases with comments emerging from
taxonomy concepts.

Mancroridis et al. [38] proposes the use of clustering téphes in order to assist with software
development and maintenance. Introducing the conceptstef-connectivity and intra-connectivity,
they develop a clustering algorithm that aims to partitioe tcomponents of a system into compact and
well-separated clusters. Specifically, they aim to applgidring to the module dependency graph in
order to identify significant connection among the systerduhes. The goal is to partition the software
system so that it maximizes the connections between the @oemps of the same cluster and minimizes
the connections between the components of distinct ckjster

Basit et al. [4] introduced the concept of structure clone proposed the use of mining techniques
in order to detect them in software. The procedure of detgdiructural clones can assist with under-
standing the design of the system for better maintenanceéinde-engineering for reuse. According to
their approach, they extract simple clones form the sourde ¢similar code fragments). Then they use
technigues of finding frequent closed item sets to detecirrig groups of simple clones in different
files or methods. Also clustering techniques are appliedeatify significant groups of similar clones.
Also Basit et al. implement their structural clone detettiechnique in a tool calle@Glone Miner

4.5.2. Classification

In [49] they use the data coming from more than 100.000 opeincsosoftware projects lying in
the SourceForge portal, in order to build a predictive mddekoftware maintenance using data and
text mining techniques. Using SAS Enterprise Miner and SA% Miner, they focused on collecting
values for variables concerning maintenance costs and é&fton OSS projects, like Mean Time to
Recover (MTTR) an error. The task also entailed the remdvatajects that were under development,
thus considering exclusively operational projects, ad a<he removal of projects that did not have
a bug reports database since the absence of such prohibdedeasurement of variables like MTTR.
Furthermore, they clustered the remaining projects basdateir descriptions, in order to discover the
most important categories of OSS projects lying in the Sefocge database. Finally, they used the
SAS Enterprise Miner to build classifiers on the MTTR classalde, after having transformed the later
into a binary one (High or Low) using its values’ distributioThe reported results highlight interesting
correlations between features like number of downloads ofisnail messages and project age and the
class variable. For example, projects with increased age lhigher MTTR than younger projects.

An approach that exploits the idea of spam filtering techeso identify fault-prone software modules
is presented in [42]. The proposed framework is based onatttetiiat faulty software modules have
similar pattern of words or sentences. Mizuno et al. progdise implementation of a tool that extracts

www.manaraa.com

432 M. Halkidi et al. / Data mining in software engineering

fault-probe (FP) modules and non fault-prone (NPF) modintes source code repositories. Then these
set of modules are used to learn a classifier that is useddsifslaew modules as FP or NFP.

Also an approach for classifying large commits so that ustded the rationale behind them is
proposed in [25]. Though large commits are usually considlas outliers when we study source control
repositories (SCRs), they may contain useful informatioold the projects and their evolution. Hindle
etal. decided to exploit classification techniques in otdaassify commits and thus identify different
types of software changes. This study shows that in manydhedarge commits refer to modification
of the system architecture while small commits are morenaftarective.

Ekanayake et al. [16] propose a method to evaluate the isgadfila prediction model. They explore
four open source projects and extract features from thets @wd Bugzilla repositories. Then they build
defect prediction models using Weka's decision tree leaand evaluate the prediction quality over time.
This study conclude that there are significant changes owerdnd thus it should be used cautiously.

4.5.3. Frequent pattern mining and association rules

The work proposed by Zimmerman et al. [59] exploits the aisgion rules extraction technique to
identify co-occurring changes in a software system. Fdaimse, we want to discover relation between
the modification of software entities. Then we aim to ansWweruestion when a particular source-code
entity (e.g. a function A) is modified, what other entities atso modified (e.g. the functions with names
B and C)? Specifically, a tool is proposed that parses thesamade and maps the line numbers to the
syntactic or physical-level entities. These entities aesented as a tripléléname, type, id The
subsequent entity changes in the repository are groupedrassaction. An association rule mining
techniques is then applied to determine rules of the f&6’ — A.

Sartipi et al. [50] proposes the use of clustering and aaionirules techniques in order to recover the
architectural design of legacy software systems accortdinger defined plans. The source code of a
legacy system is analyzed and a set of frequent itemsetirécted from it. Using clustering and pattern
matching techniques, the proposed algorithm defined th@oaents of the legacy system. Given a user
guery, the best matching component of the system is selested a score can be associated with each
possible answer (match) to the user query and thus a rankitgs@n alternatives can be presented to
the user for further evaluation.

An approach for identifying library reuse patterns is préed in [41]. The proposed approach
exploits association rules techniques to identify retegiamong classes in a library. The authors extend
the concept of traditional association rules to generdlizdes so that the inheritance relationships are
takeninto account. Thus an automated technique is dewéfopdiscovering reused patterns in libraries
and identifying characteristic usages of a library.

An approach for analyzing instantiation code to find usagegis in evolving frameworks is proposed
in [51]. The mining process takes as input two versions dfamgation code and exploiting frequent
pattern mining techniques aims to find patterns describiogaanged usage of the framework. At the
first step, it extracts information about how the instamdiatode uses the framework (which methods
are called, which framework classes are sub-classed). ffasactions are built by combining usage
information from the two versions of each instantiationssla Finally, an association rule mining
algorithm is applied to those transactions to extract adlsgime change rules.

4.5.4. Change and deviation detection

The identification and fixing of bugs is one of the most commooth eostly tasks of software devel-
opment. The software projects manage the flow of the bugg ssiftiware configuration management

www.manaraa.com

M. Halkidi et al. / Data mining in software engineering 433

(SCM) systems to control the bug changes, bug tracking softWsuch as Bugzilla) to capture bug
reports and then they record the SCM system that fixes a gpbuiiin the tracking system. Generally,
a bug is introduced into the software when a programmer makésnge to the system, that is, to add
a new functionality, to reconstruct the code or to repair@stmg bug. When the bug is identified, it
is recorded in a bug tracking system. Subsequently, a desetmuld repair the bug by modifying the
project’s source code and commit the change to the SCM systdns modification is widely called
bug-fix change. The bug tracking and SCM systems are widedg,ute most readily available data
concerning bugs are the bug-fix changes. There are someamhe®that deals with mining a SCM
system to find those changes that have repaired a bug. Thetevarcategories of approaches that
search for changes in the log messages: i) approaches pt3eahrches for keywords such as 'Fixed’
and 'Bug’, ii) approaches that look for references to the tepprts (e.g#9843). Bug-fixing informa-
tion is useful for determining the location of a bug. Thismis useful analysis, such as determining
per-file bug counts, predicting bugs, finding risky partsaffsare or visually revealing the relationship
between bugs and software evolution. One of the main prabieitih the bug-fix data is that it does
not give an indication when a bug was injected into the codkwaino injected it. Also bug-fix data
provide imprecise data on where a bug occurred. In ordereplgeinderstand the phenomena related
to the introduction of bugs into the code, we need accesstadtual moment and point the bug was
introduced. Thelgorithm proposed in [52] (further referred to as SZZ algorithm) is fiist effort to
identify bug-introducing changes from bug-fix changes. if@n steps o5ZZcan be summarized as
follows: i) it finds bug-fix changes by locating bug identifierr relevant keywords in change log text or
following a recorded linkage between a bug tracking systedeaspecific SCM commiit. ii) it runsaiff
tool to determine what changed in the bug-fixes. Tiétool returns a list of regions further, referred
to ashunks which are different in the two files. In each hunk the delasedhodified source code is
considered as a location of a bug. iii) it tracks down theina@f the deleted or modified source code in
hunks. For this purpose it uses the built-in annotate featia SCM system, which computes the most
recent revision in which a line was changed and the develhermade the change. The discovered
origins are identified as bug-introducing changes. Howthene some limitations of the SZZ algorithm
which can be summarized as follows:

— SCM annotation does not provide enough information to ifiebtig-introducing changes. Also we
have to trace the evolution of individual lines across lievis in order that the functions/methods
containment can be determined.

— All modifications are not fixes: There might be changes thanat bug-fixes. For instance, changes
to comments, black line and formatting are not bug-fixesnekeugh based on SCM are flagged as
such.

An approach proposed in [34] aims to tackle the above disclsoblems of the SZZ algorithm. The
proposed approach exploits annotation graphs which aomtirmation on the cross-revision mappings
of the individual lines. This allow us to associate a bug viishcontaining function or method. The
proposed bug-introducing identification algorithm can bwkyed as an initial clean-up step to obtain
high quality data sets for further analysis on causes artgrpatof bug formation. The accuracy of
the automatic approach is determined using a manual agpra&ds implies that two human manually
verified all hunks in a series of bug-fix changes to ensurediresponding hunks are real bug-fixes. The
main steps of the approach introduced in [34], which aim®&toave false positive and false negatives
in identifying bug-introducing changes are the followings

— Use annotation graphs that provide more detailed annatatformation

www.manaraa.com

434 M. Halkidi et al. / Data mining in software engineering

— lgnore comments, black line, format changes, outlier bxgeftisions in which too many files were
changed
— Manually verify all hunks in the bug-fix changes

4.5.5. Mining approaches based on statistics

Many of source code version repositories repositories aanaed and managed by tools such as
CVS (Concurrent Versions System) and (increasingly) itsceasorSubversion These tools store
difference information access across document(s) vessidentifies and express changes in terms of
physical attributes, i.e., file and line numbers. Howev&tSCGloes not identify, maintain or provide any
change-control information such as grouping several ceaimgmultiple files as a single logical change.
Moreover, it does not provide high-level semantics of thereeof corrective maintenance(e.g. bug-fixes).
Recently, the interest of researchers has been focusediuridees that aim to identify relationships and
trends at a syntactic-level of granularity and further a&ge high-level semantics from the information
available in repositories. Thus a wide array of approadha&sgerform mining of software repositories
(MSR) have been emerged. They are based on statistical dsedéimal differencing techniques, and aim
to extract relevant information from the repositories,lgpait and derive conclusions within the context
of a particular interest.

4.5.5.1. Mining via CVS annotations

One approach is to utilize CVS annotation information. Galll. [20] propose an approach for
detecting common semantic (logical and hidden) dependstgtween classes on account of addition
or modification of particular class. This approach is basedhe version history of the source code
where a sequence of release numbers is maintained for eashinl which its changes are recorded.
Classes that have been changed in the same release are ednmparder to identify common change
patterns based auuthor nameandtime stamgrom the CVS annotations. Classes that are changed with
the same time stamp are inferred to have dependencies.

Specifically, this approach can assist with answering dquressuch as which classes change together,
how many times was a particular class changed, how many classges occurred in a subsystem
(files in a particular directory). An approach that studhesfile-level changes in software is presented
in [22]. The CVS annotations are utilized to group subsetjokanges into what termed modification
request (MR). The proposed approach focus on studying bRg-dhd comment-MRs to address issues
regarding the new functionality that may be added or the thgismay be fixed by MRs, the different
stages of evolution to which MRs correspond or identify thkation between the developer and the
madification of files.

4.5.5.2. Mining via heuristics

CVS annotation analysis can be extended by applying heagistat include information from source
code or source code models. Hassan et al. [24] proposeddymatheuristics (developer-based, history-
based, code-layout-based (file-based)) which are thentageddict the entities that are candidates for a
change on account of a given entity being changed. CVS atimidgaare lexically analyzed to derive the
set of changed entities from the source-code repositofiesa the research in [24,59] use source-code
version history to identify and predict software change$e fuestions that they answered are quite
interesting with respect to testing and impact analysis.

www.manaraa.com

M. Halkidi et al. / Data mining in software engineering 435

Table 6
Mining approaches used in Software Reuse

Software Reuse

MINING INPUT DATA ANALYSIS

APPROACH DATA RESULTS

Frequent pattern mining and set of variables rules among

Association Rules [40] describing projects [40] featurkprojects

Frequent pattern mining [3] source code software desige et

Classification [39] project variables value ranges used
describing projects [40] in successful reuse projects

Classification [30] project variables features affect

describing projects [40] software reuse

4.5.5.3. Mining via differencing

Source-code repositories contain differences betweesiorer of source code.Thus it would be inter-
esting to mine source code repositories, identify and aeealye actual source-code differences.

An approach that aims to detect syntactic and semantic esaingm a version history of C code
is presented by Raghavan [48]. According to this approaabh &ersion is converted to an abstract
semantic graph (ASG) representation. This graph is a datatgte which is used in representing
or deriving the semantics of an expression in a programmanguage. A top-down or bottom-up
heuristics-based differencing algorithm is applied tohepair of in-memory ASGs. The differencing
algorithm produces an edit script describing the nodesdahatidded, deleted, modified or moved in
order to derive one ASG from another. The edit scripts preddor each pair of ASGs are analyzed to
answer questions from entity level changes such as how nugaayiéns and functions calls are inserted,
added or modified to specific changes such as how rnifastatement conditions are changed. Also
in [12] a syntactic-differencing approach, which is caltedta-differencingis introduced. It allows us
to ask syntax-specific questions about differences. Aduogra this approach the abstract syntax tree
(AST) information is directly encoded into the source code XML format. Then we compute the
added, deleted or modified syntactic elements based on tueled AST. The types and prevalence of
syntactic changes can be easily computed. Specificallgppeoach supports the following questions:
i) Are new methods added to an existing class?, ii) Are thaenges to pre-processor directives?, iii)
Was the condition in an if-statement modified?

4.6. Software reuse

Systematic software reuse has been recognized as one ofagteimportant aspects towards the
increase of software productivity, and quality [40,45].oligh software reuse can take many forms (e.qg.,
ad-hoc, systematic), and basic technical issues such atogevent of software repositories, and search
engines for software components in various programminguages are on the frontier of research in the
area of software reuse, recently there have been atteniptotporate data mining techniques in an effort
to identify the most important factors affecting the suscelssoftware reuse. The motivation behind
those approaches stems partially from the fact that predoveys showed possibility of projects’ failure
due to the lack of reuse processes introduction, as well aficetion of non-reuse processes [45].

In this direction, Morisio et al. [45] attempted to identifye key factors that are crucial to the success of
the software reuse process in conducted projects. Moréfigadly, they collected through an interview
process data from twenty-four European projects from e&reicompanies in the period from 1994 to
1997. In their analysis, they defined 27 variables that aesl tie formulate the description of each
project, which are nicely summarized in [40]. Among the usadables, there are ten state variables

www.manaraa.com

436 M. Halkidi et al. / Data mining in software engineering

representing attributes over which a company has no cosixdligh-level control variables representing
key high-level management decisions about a reuse proggarmow-level control variables representing
specific approaches to the implementation of reuse, andiabl@indicating whether the project was
successful or not. Currently, this data set, though with deamples, constitutes the largest empirical
data set on software reuse at present, and in this data seabg&ta mining algorithms have been applied
to identify patterns regarding the factors affecting thecess of software reuse. Table summarizes the
main feature of mining techniques that have been used iwaddtreuse.

4.6.1. Classification

In the same study ([40]), the authors also attempted the udeaision trees, and more specifically
the J.48 implementation of Weka, which is essentially the impleraéinh of theC4.5 decision tree
algorithm [47], in order to analyze the same data. The agfin of theC'4.5 decision tree algorithm
in this was made in a manner so that the authors were ablentfiddhe most important features from
the 27, by conducting attribute removal experiments. MagecHically, they studied what would be
the root node of the tree in each case, if at each time the mpstriant attribute is removed (i.e., the
root node), and the tree is rebuilt without considering #ttitbute. This methodology allowed them to
identify weak attributes (i.e., attributes that appearrig aon-root node after several removals of root
node attributes), as well as barely supportive attributes éttributes that, once root nodes, if removed
and the tree is rebuilt disregarding them, the classifioaitzuracy remains the same).

In addition to the aforementioned analysis, they also appdi learning algorithm calleieatment
learning, and more specifically they applied thaR2algorithm [39]. The basic idea behind the treatment
learner is that it selects a subg@tof the training seD, which contains more preferred classes and less
undesired ones. The criterion according to which the subsatlected is based on the used treatment,
denoted adk,,, and, thusD’ should not contradict the treatment. However, TdR2treatment learner
requires from the user to assign a numeric score to eachtblats®presents how much a user likes that
class. In this case, the authors weighted more the suctessfe project than an unsuccessful project,
and after the conducted analysis through the applicatid®&¥2 they were able to discover the features
and the respective value ranges that were mostly used irssitt reuse projects. The interesting part
from the application of this data mining algorithm is thetfdwat the algorithm discovered features and
value ranges that the empirical study in [45] had failed toawer, showing how important the application
of data mining can be in this case.

In another direction, but still using the same data set fétwsoe reuse, Jiang et al. [30] applied an
ensemble learning approach (i.e, an approach that comtiiredecisions of different classifiers and
attempts to get the best of all worlds) based on the notioraeflom forests [9]. The used ensemble
algorithm,RF2TREHRandom Forest to Tree), introduced in the same paper, lmasdnditions under
which it can be guaranteed to work well: (a) the originalrtrag data set is very small, like in the case
of the data set produced in [45], and (b) the random foresbiseraccurate than single decision tree if
both of them were directly trained from the original traigidata set. The algorithm first builds a random
forest from the original data set, and then the random fasasted to generate many virtual examples
that are used to train a single decision tree. Based on tbenucted experiments, they discovered
that the most important features that affect the successfolare reuse are: Human Factor,Reuse
Process Introduced, Type of Software Production, Appbcadomain, Top Management Commitment,
and Nonreuse Processes Modified, which vary from the enapaicalysis in [45], and the data mining
analysis in [40]. The differences, as well as the similesitof the three research works with regards to
the most important factors affecting software reuse arensamzed nicely in Table 8 in the work of Jiang
et al. [30].

www.manaraa.com

M. Halkidi et al. / Data mining in software engineering 437

4.6.2. Frequent pattern mining and association rules

Menzies and Di Stefano [40] worked on the aforementioned glat in order to examine further what
conclusions may be drawn regarding the affecting factorsoitware reuse, and also to compare the
patterns derived from applying automated data mining notugies with the empirical conclusions
formulated in [45]. Among the methodologies they used, eission rule mining was employed, in
order to extract meaningful associations betweer2th&eatures. The association rule extraction was
conducted with the Apriori algorithm [1] implementatiorfered by the Weka data mining platfotm
The top 10 association rules derived, setting minimum cenfi@ at 90%, are presented in [40]. Among
the association rules derived, there are very interestisg@ations learned, like for example the fact
that when the produced software was embedded in a prodggct if@.contrast to being embedded in
a process, or itself being a stand-alone product), the usewsrd policy for software reuse was not
enabled (i.e.SoftwareandProduct = product => RewardsPolicy = no).

Another important aspect of data mining in software enginegeis the process of mining design
patterns from software, in order to allow for the reuse ofvgafe system design expertise. More
specifically, the process of mining focuses on extractirttepas by analyzing the code or the design of
the software system in order to trace back the design dasisiade, which are usually buried inside
the source code. Typically, during the software systemgiedhe system components are not tagged
with the respective design patterns applied, and, thusleékign decisions are no longer connected with
the existent system, often leading to lack of understandfripe software’s details. In this direction,
a number of techniques and tools have been proposed in thewddsh attempt to mine the design
patterns from a software system.

In [14] the authors present a thorough overview of theseagmtres in a comparative study. Depending
on the description of each design pattern, i.e., the petispdoom which it is described, the approaches
of design pattern mining can be widely classified into thescm®alyzing the structural aspect only, the
behavioral aspect only, or both. There are also some apgpesdhat attempt to analyze a combination
of the above aspects including the semantic aspect as waithwefers to the semantic meaning of
some entities in the system. From the perspective of oulaisalwe focus only on the types of data
mining methods to extract those patterns. In this directiom primal technique used is the utilization of
existing tools that transform the source code into somerimediate representation, e.g. Abstract Syntax
Trees (AST) or Abstract Semantic Graphs (ASG), and thenlsisgarch strategies are applied to the
transformed graphs, in order for patterns to be identifietiis procedure of course implies that the
patterns are somehow already defined, in order for the agtiglit of the search strategy to be able to
find matches. The problem of design pattern mining from smaozle is then reduced to identify graph
components of the code that match already predefined patighich can be expressed for example in
a XML-like format [3].

The matching itself can be usually conducted through theofiseib-graph isomorphic comparison
between the code and the pattern graphs, and thus it is a fbsupervised learning (patterns are
already known), using graph comparison or similarity nesttbetween the examined graphs and the
graph patterns.

5. Summary and open issues in mining software repositories

The recent explosive growth of our ability to collect dataidg the software development process has
created a need for new, scalable and efficient, tools foratedtysis. Also there is strong requirement for

3 http://www.cs.waikato.ac.nz/ml/weka/.

www.manaraa.com

438 M. Halkidi et al. / Data mining in software engineering

mining software repositories and extracting hidden infation. This extracted knowledge is expected
to assists the software engineers with better understgidendevelopment processes and predict the
future of software products. The main focus of the disciplif data mining in software repositories is
to address this need. In this paper we review the variousrdating methods and techniques used in
software engineering. Specifically our objective is to preasn overview of the different data sources in
software engineering that are interesting to be mined. Wsaiscuss how the data mining approached
can be used in software engineering and what software emgiigetasks can be helped by data mining.
The main characteristics of data mining approaches usedfiware engineering are summarized in
Tables 1-6.

One of the main issues in software engineering is the evatluaf software project and the definition
of metrics and model that give us an indication of the futura project. Though a number of mining
approaches have been used to assist with software engigeasks, an open issue is if and how data
mining techniques can be exploited to define novel qualitiricgein software engineering.

Below we discusshallenging issues in mining software engineering repo&sthat are interesting
and deserve further work.

— Supervised learning approachdike text classification, based on predictive modelinghteques,
for the purposes of predicting future bugs and/or possiliigcted parts of code. A measure of
future influence of bugs in the source code, associated withight and a prediction ranking can
show a lot for the software quality.

— Text clustering of the bug reportand cluster’s labeling can be used to automatically craate
taxonomy of bugs in the software. Metrics in that taxonomy ba defined to show the influence
of generated bugs belonging to a specific category, to ottexgories of bugs. This can also be
translated as a metric of bug influence across the softwajeqbr

— Online mining The data mining technigues that have recently been des@losoftware engineer-
ing conduct offline mining of data already collected andesforHowever, in modern integrated SE
environments, especially collaborative environmentiyw&oe engineers must be able to collect and
mine SE data online to provide immediate feedback. Thus Beciging issue is the adaptation or
development of stream mining algorithms for software eagiing data so that the above mentioned
requirement are satisfied.

— Quiality project classificationA classifier will be built to categorize projects as suctdss non-
successful based on the data collected about projectse Tads provide information about features
of projects related to the popularity, ranking of projectEhe quality of the classification (i.e.
accuracy of classifier) depends on the training set. Theretingirement is to select the appropriate
set of data features based on which we will build an accutassifier of projects.

— Association rules extraction from OSS project dathere is useful information provided for Open
Source Software projects regarding the number of downlaghdsnumber of developers, the pop-
ularity, the vitality of the software, etc. These are coesad to be metadata of the OSS project.
Analyzing thus information we can extract useful knowleddgp@ut OSS projects and new qual-
ity metrics could be defined. An interesting direction wobklto find correlations between the
metadata provided for OSS. We assume that each project aaptasented by a vectqorpjectid,
Selectednetadaty where metadata refers to the OSS development metricpapularity, activ-
ity, number of downloads. The subsequent project’'s evimlnstare stored in the repository as
transactions. Then an association rule extraction algoritan be used to discover correlations or
co-occurrences of events in a given OSS environment.

www.manaraa.com

M. Halkidi et al. / Data mining in software engineering 439

— Graph mining on the mailing lists of OSS projectBased on the information provided by the
mailing list of the project we could build author and messagaphs. Then applying mining
technigues to these graphs we can extract useful informat¢igarding message exchange or the
users that contributes to projects. An interesting resegpproach will be to exploit graph processing
techniques, like PageRank or Spreading Activation so tleaiank nodes in each graph. The extract
results can assist with rank users and measure relatedewssdn important users and important
messages.

— Pattern mining form source codédnother interesting perspective in the category of depmftern
mining approaches in software engineering, could be toyapmraph clustering approach, or in
general an unsupervised method, and examine what desiggnsatvould be produced from the
analyzed code. This would imply the definition of a graph tisg model, where in this case the
graphs could be Abstract Syntax Trees (ASTs) or AbstractadéimGraphs (ASGs). The model
should allow for the computation of the similarity betweeagghs, as well as for the computation of
cluster representatives, i.e., the centroid graph of thphg included in each cluster. The process
would then be able to extract patterns, and which in turnagivle an insight, after post-processing,
about the design patterns used, as well as the design decisiade.

— Mining bug reports The bug report database contains useful information diggthe quality of the
software. Analyzing the data collected from the bug fixinggadure, we could extract information
abouti) average impact on code change (i.e. % of files or %he§lchanged), ii) estimate mean time
before bug fixing developers involved in the bug fixing praged iii) temporal bug distribution in
relation to project release dates.

Acknowledgments

This work is supported by the European Community Framewoogimme 6, Information Society
Technologies key action, contract number IST-5-033331(S05S: Software Quality Observatory for
Open Source Software).

References

[1] R. Agrawal, T. Imielinski and A.N. Swami, Mining assotian rules between sets of items in large databaseRrdo of
the ACM SIGMOD 1993, pages 207-216.

[2] R.Baeza-Yates and B. Ribeiro-Netdpdern Information RetrievalAddison Wesley, 1999.

[3] z. Balanyi and R. Ferenc, Mining design patterns from @eurce code. Irinternational Conference on Software
MaintenancgICSM), 2003, pages 305-314.

[4] H.A.Basit and S. Jarzabek, Data mining approach foradite higher-level clones in softwarlEEE Transactions on
Software Engineering2009.

[5] M. Berry and G. Linoff, Data Mining Techniques For marketing, Sales and Customep&u John Willey and Sons
Inc., 1996.

[6] C. Bird, A. Gourley, P. Devanbu, M. Gertz and A. Swamirath Mining email social networks. IRroceedings of
International Workshop on Mining Software RepositofidsSR, 2006.

[7] C. Bird, P. Rigbyy, E. Barr, D. Hamilton, D. Germany and®vanbu, The promises and perils of mining git. In
Proceedings of the IEEE Working Conference on Mining Saé\Reepositories2009.

[8] J. Bowring, J. Rehg and M.J. Harrold, Acive learning fat@matic classification of software behavitmternational
Symposium on Software Testing and Analfl§STA, 2004.

[9] L.Breiman, Random forestdjachine Learningt5(1) (2001), 5-32.

[10] S. ChakrabartiMining theWeb: Analysis of Hypertext and Semi StructurethDMorgan Kaufmann, 2002.

www.manaraa.com

440 M. Halkidi et al. / Data mining in software engineering

[11] R Chang, A. Podgurski and J. Yang, Discovering negtéctenditions in software by mining dependence graplEEE
Transactions on Software Engineerjrip08.

[12] M.L. Collard and J.K. HollingsworthMeta-differencing: An Infrastructure for Source Code Bifince AnlysisKent
State University, Kent, Ohio USA, Ph.D. Dissertation Tbe2004.

[13] W. Dickinson, D. Leon and A. Podgurski, Finding failardy cluster analysis of execution profildsternational
Conference on Software Engineerifi@SE), 2001.

[14] J.Dong,Y.Zhaoand T. Peng, Areview of design patteming techniquednternational Journal of Software Engineering
and Knowledge Engineerint®(6) (2009), 823—-855.

[15] R.O. Duda and P.E. Hatattern Classification and Scene Analysishn Wiley and Sons, 1973.

[16] J. Ekanayake, J. Tappolet, H. Gall and A. BernsteincRiray concept drift of software project using defect prédic
quality. In Proceedings of InternationalWorkshop on Mining SoftwaepésitoriefMSR), 2009.

[17] J. Estublier, D. Leblang, A. Van Der Hoek, R. Conradi,@emm, W. Tichy and D. Wilborg-Weber, Impact of software
engineering research on the practice of software configumratanagemenACM Transactions on Software Engineering
and Methodologyl 4(4) (2005), 1-48.

[18] U. M. Fayyad, G. Piatesky-Shapiro, P. Smuth and R. Utbamy,Advances in Knowledge Discovery and Data Mining
AAAI Press, 1996.

[19] P. Francis, D. Leon, M. Minch and A. Podguraki, Treedshmethod for classifying software failures.RPmoceedings of
the 15th International Symposium on Software ReliabilitgiBeering 2004.

[20] H. Gall, K. Hajek and M. Jazayeri, Detection of logicalupling based on product release historyPhceedings of the
14th IEEE International Conference in Software Maintaiogrii998.

[21] D. German and A. Mockus, Automating the measuremenpehasource projects. IRroceedings of the 3rd Workshop
on Open Source Software Engineering, 25th Internationaif@ence on Software Engineerifi€ SE-03, 2003.

[22] D.M. German, An empirical study of fine-grained softeanodifications. IrProceedings of 20th IEEE International
Conference on Software Maintenar¢€SM’04), 2004.

[23] J. Han and M. KambeBata Mining: Concepts and Techniqyégorgan Kaufmann Publishers, 2nd edition, 2006.

[24] A. Hassan and R.C. Holt, Predicting change propagatiosoftware systems. IRProceedings of 26th International
Conference on Software Maintenar@®@€SM’'04), 2004.

[25] A.Hindle, D. German and R. Holt, What do large commitkus? a taxonomical study of large commits Rroceedings
of the IEEE Working Conference on Mining Software Repasiso2008.

[26] J.Huffman Hayes, A. Dekhtyar and J. Osborne, Improveguirements tracing via information retrieval Rroceedings
of the International Conference on Requirements Engingefi003.

[27] J.Huffman Hayes, A. Dekhtyar and S. Sundaram, Textmgifior software engineering: How analyst feedback impacts
final results. InProceedings of International Workshop on Mining SoftwaepdsitoriefMSR), 2005.

[28] A.K.Jain and R.C. Dubeglgorithms for Clustering DataPrentice-Hall, 1988.

[29] C.Jensenand W. Scacchi, Data mining for software m®discovery in open source software development comreaniti
In Proceedings of International Workshop on Mining SoftwaepésitorieqMSR), 2004.

[30] Y. Jiang, M. Liand Z.H. Zhou, Mining extremely small datets with application to software reuSaftw, Pract Exper
39(4) 2009 423-440.

[31] H.Kagdi, M. Collard and J. Maletic, Comparing approasio mining source code for callusage patternBrateedings
of International Workshop on Mining Software Repositof/dSR, 2007.

[32] Y. Kannelopoulos, Y. Dimopoulos, C. Tjortjis and C. Mk Mining source code elements for comprehensing object-
oriented systems and evaluating their maintainabit@EKDD Explorations3(1), 2006.

[33] L. Kauffman and P.J. Rousseeuwinding Groups in Data: An Introduction to Cluster Analysi®hn Wiley and Sons,
1990.

[34] S.Kim, T. Zimmermann, K. Pan and J. W Whitechead, Auticidentification of bugintroducing changes. Iterna-
tional Conference on Automated Software Engineer2@f6.

[35] M. Last, M. Friedman and A. KandeThe Data Dimining Approach to Automated Software Testim§roceeding of the
SIGKDD Conference, 2005.

[36] C. Liu, X Yan, and J. Han. Mining control ow abnormalitgrflogical errors. InProceedings of SIAM Data Mining
Conferenc€SDM), 2006.

[37] C. Liu, X. Yan, H. Yu, J. Han and P. Yu, Mining behavior gte for ‘backtrace’ of non-crasinh bugs. 81AM Data
Mining Conferenc¢SDM), 2005.

[38] S. Mancoridis, S. Mitchell, C. Rorres, Y. Chen and E.RanGner, Using automatic clustering to produce high-level
system organisations of source codePhoc. 6th Int'l Workshop Program UnderstandifiyvVPC 9§, 1998.

[39] T. Menzies, E. Chiang, M. Feather, Y. Hu and J.D. Kipesn@ensing uncertainty via incremental treatment leatning
In book chapter inSoftware Engineering with Computational IntelligendeM. Khoshgoftaar, ed., page Volume 731.
Kluwer Academic Publishers, 2003.

www.manaraa.com

M. Halkidi et al. / Data mining in software engineering 441

[40] T. Menzies and J.S. Di Stefano, More success and fafho®rs in software reuséEEE Trans Software Eng9(5)
(2003), 474-477.

[41] A. Michail, Data mining library reuse patterns usingigealized association rules.Rtoc Int'l Conf Software Eng2000.

[42] O. Mizuno, S. Ikami, S. Nakaichi and T. Kikuno, Spam filmsed approach for finding fault-prone software modules.
In Proceedings of International Workshop on Mining SoftwaepésitorieqMSR), 2007.

[43] A.Mockus and L.G. Votta, Identifying reasons for saftve changes using historic database®rceedings of Interna-
tional Conference on Software Maintenan2600.

[44] S.Morisaki, A. Monden and T. Matsumura, Defect datdysiabased on extended association rule miningrateedings
of International Workshop on Mining Software RepositofdSR, 2007.

[45] M. Morisio, M. Ezran and C. Tully, Success and failurettas in software reuséEE Trans Software Engg(4) (2002),
340-357.

[46] A. Podgurski, W. Masri, Y. McCleese, M. Minch, J. Sun,\Bang and W. Masri, Automated support for classifying
software failure reports. IRroceedings of the 25th International Conference on Soéwmgineering2003.

[47] J.Ross QuinlanC4.5: Programs for Machine Learninglorgan Kaufmann, 1993.

[48] S. Raghavan, R. Rohana and A. Podgurski, Dex: A semgndiph differencong tool for studying changes in large code
bases. IrProceedings of 20th IEEE International Conference on SwftviMiaintenancg€lCSM’'04), 2004.

[49] U.Razaand M.J. Tretter, Predicting software outcomstsg data mining and text mining. In SAS Global Forum, 2007.

[50] K. Sartipi, K. Kontogiannis and F. Mavaddat, Architexal design recovery using data mining technique$roc. 2nd
European Working Conf. Software Maintenance Reenging€¢G8SMR 2000 2000.

[51] T. Schafer, J. Jonas and M. Mezini, Mining frameworkgesehanges from instantiation codelditernational Conference
on Software EngineerinCSE), 2008.

[52] S. Sliwerski, T. Zimmermann and A. Zeller, When do chesihduce fixes? IRroceedings of International Workshop
on Mining Software Repositori€sSR, 2005.

[53] lan Somerville Software EngineeringAddison-Wesley, Chapter 30, 4th edition, 1992.

[54] L. Voinea and A. Telea, Mining software repositoriesiwivsgrab. IrProceedings of International Workshop on Mining
Software Repositorigd1SR-06, 2006.

[55] S.M.Weiss and C. KulikowskiComputer Systems that Learn: Classification and Predickitmthods from Statistics,
Neural Nets, Machine Learning and Expert Systeidhargan Kauffman, 1991.

[56] C.C.Williamsand J.K. Hollingsworth, Automating ming of source code reposito- ries to improve bug finding tespnes,
IEEE Transactions on Software Engineeridif6) (2005), 466—480.

[57] T. Xie, S. Thummalapenta, D. Lo and C. LiData mining for Software EngineerintEEE Computer, 2009.

[58] T. Xie, S. Thummalapenta, D. Lo and C. Liu, Data mining$oftware engineering;omputerd2 (2009), 55-62.

[59] T.Zimmermann, P. Weibgerber, S. Diehland A. ZellemMg version histories to guide software change®roceedings
of 26th International Conference on Software Enginee(i@SE’04, 2004.

www.manaraa.com

Copyright of Intelligent Data Analysisis the property of 10S Press and its content may not be copied or emailed
to multiple sites or posted to a listserv without the copyright holder's express written permission. However,
users may print, download, or email articles for individual use.

www.manharaa.com

